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Abstract

High-throughput sequencing using the Illumina HiSeq platform is a pervasive and

critical molecular ecology resource, and has provided the data underlying many

recent advances. A recent study has suggested that “index switching,” where reads

are misattributed to the wrong sample, may be higher in new versions of the HiSeq

platform. This has the potential to invalidate both published and in-progress work

across the field. Here, we test for evidence of index switching in an exemplar

whole-genome shotgun data set sequenced on both the Illumina HiSeq 2500, which

should not have the problem, and the Illumina HiSeq X, which may. We leverage

unbalanced heterozygotes, which may be produced by index switching, and ask

whether the undersequenced allele is more likely to be found in other samples in

the same lane than expected based on the allele frequency. Although we validate

the sensitivity of this method using simulations, we find that neither the HiSeq

2500 nor the HiSeq X has evidence of index switching. This suggests that, thank-

fully, index switching may not be a ubiquitous problem in HiSeq X sequence data.

Lastly, we provide scripts for applying our method so that index switching can be

tested for in other data sets.
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1 | INTRODUCTION

High-throughput sequencing, primarily through the Illumina HiSeq

platform, has revolutionized molecular ecology. In fact, 50% of origi-

nal articles in a recent issue of Molecular Ecology (Vol 26, Issue 2)

included Illumina-derived sequence data. Researchers can now

explore questions that were completely unanswerable before current

sequencing technologies, using approaches such as genome scans,

genome assembly and high-density genetic mapping (e.g., Gould &

Stinchcombe, 2017; Li et al., 2017; Standage et al., 2016). With the

central role that sequencing plays, it is alarming that a recent pre-

print suggests increased index switching on the new HiSeq 4000

and HiSeq X machines (Sinha et al., 2017).

To prepare DNA for Illumina sequencing, DNA strands are frag-

mented, and adapter sequences are attached to the ends of these

fragments. These adapters contain the sequence that binds to the

flow cell, a primer sequence for amplification during sequencing and,

potentially, a barcode index for linking reads to individual samples.

Indexes are required when multiplexing samples within a single

sequencing lane, and can be included in adapters at one or both

ends of the DNA fragments. As the output of a single sequencing

lane has increased, multiplexing has become increasingly common.

This is especially true in molecular ecology, where researchers often

aim to maximize sample size using low-coverage whole-genome data

(Buerkle & Gompert, 2013). For example, a single lane on the HiSeq

4000 can sequence 200 stickleback genomes (~460 MB) to 19
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coverage. Consequently, it is critical that samples are correctly

demultiplexed or the resulting sequence data will contain mixes of

reads from unexpected and unpredictable sources.

A recent preprint by Sinha et al. (2017) reports high levels of index

switching in a single-cell RNAseq experiment. They dual indexed (i.e.,

barcodes on both adapters) all samples using a Nextera XT kit and

found that samples that shared a single index had greater similarity in

gene expression levels than expected. The authors attributed this to

index switching, and showed that controls containing adapters and

index primers but no template DNA still had reads assigned to them,

receiving 5%–7% of the average number of reads of samples with tem-

plate DNA as a result of index switching. They proposed that index

switching occurs during cluster generation (before sequencing) when

free index primers replicate already indexed library fragments. These

newly copied fragments will then carry one wrong index and be misat-

tributed to another sample. Importantly, they find that this only occurs

on the Illumina HiSeq 4000, which uses a patterned flow cell and a

new exclusion amplification (ExAmp) chemistry, and not in the Next-

Seq 500, which does not. Both the HiSeq 4000 and HiSeq X use a pat-

terned flow cell and the cBot 2 system for cluster generation,

suggesting that the problem may occur in both machines. Illumina has

acknowledged that index switching can occur and is higher in machi-

nes that use a patterned flow cell, but suggests total index switching is

<2% of reads (Illumina Inc, 2017).

In the light of the potential problems, we explored a set of

whole-genome-sequenced samples, half of which were sequenced

on the HiSeq 2500, which does not use the patterned flow cell and

ExAmp chemistry, and half on the HiSeq X, which does. We have

developed a novel method for detecting index switching in genomic

data sets and show that in our samples, index switching is not signif-

icantly enriched in the HiSeq X.

2 | METHODS

2.1 | Study species and library preparation

To identify whether index switching was detectable in an average

whole-genome sequence data set, we analysed a set of 323 wild

Helianthus annuus (common sunflower) whole-genome sequence sam-

ples. Plants were grown from field-collected seeds obtained from 28

populations located across the Midwestern USA and Southern

Canada. Genomic DNA was extracted from frozen leaf tissue using

either a modified CTAB protocol (based on Murray & Thompson,

1980), the DNeasy Plant Mini Kit or the DNeasy 96 Plant Kit (Qiagen,

Hilden, Germany). DNA was sheared to an average fragment size of

350 bp using a Covaris M220 ultrasonicator (Covaris, Woburn, MA,

USA), following the manufacturer’s recommendations. Seven hundred

and fifty nanograms of sheared DNA was used as starting material to

prepare paired-end whole-genome shotgun Illumina libraries, using a

protocol largely based on Rowan, Patel, Weigel, & Schneeberger

(2015) the TruSeq DNA Sample Preparation Guide from Illumina (Illu-

mina, San Diego, CA, USA) and Rohland & Reich (2012). End-repairing

of the sheared DNA fragments was performed using the NEBNext

End Repair Module (NEB, Ipswich, MA, USA). The fragments were

then A-tailed using Klenow Fragment (30–>50exo-) from NEB and

ligated to 24-bp-long, nonbarcoded adapters with a 30 T-overhang

(Table S1) using the Quick Ligation Kit from NEB. After each enzy-

matic step, the reactions were purified using 1.6 volumes of a solution

of paramagnetic SPRI beads (MagNA), prepared according to Rohland

& Reich (2012). An enrichment step was then performed using KAPA

HiFi HotStart ReadyMix (Roche, Basel, Switzerland) and short, nonin-

dexed primers that do not extend the adapters (Table S1). The reac-

tions were then purified using 1.6 volumes of MagNA beads. The

sunflower genome contains a very large amount of highly repetitive

sequences derived from the recent expansion of two retrotransposon

families (Staton et al., 2012). To reduce the representation of repeti-

tive sequences, the enriched libraries were treated with a duplex-spe-

cific nuclease (DSN; Evrogen, Moscow, Russia), following the

protocols reported in Shagina et al. (2010) and Matvienko et al. (2013)

with modifications. The fragments were then further amplified using

Kapa HiFi HotStart ReadyMix and primers (to a final concentration of

0.4 lM each) to complete the adapters and add a six-bp index to the

P7 adapter (Table S1). The sequence of the completed adapters is

identical to that of Illumina’s TruSeq adapters.

After amplification, the libraries were purified twice with 1.6 vol-

umes of MagNA beads, quantified using a QuBit dsDNA Broad

Range Assay Kit (Invitrogen, Carlsbad, CA, USA) and analysed on a

2100 Bioanalyzer instrument using a High Sensitivity DNA Analysis

Kit (Agilent, Santa Clara, CA, USA). The libraries were then quantified

on an iQ5 Real Time PCR Detection System (Bio-Rad, Hercules, CA,

USA) using Maxima SYBR Green qPCR Master Mix (ThermoFisher

Scientific, Waltham, MA, USA) to determine molarity, and pools con-

sisting of ten libraries each were prepared. All libraries were

sequenced at the Genome Queb�ec Innovation Center; 156 libraries

were sequenced on a HiSeq 2500 instrument and 165 were

sequenced on a HiSeq X instrument (Illumina, San Diego, CA, USA).

Importantly, samples were multiplexed within lanes in a random

manner without regard to population ID.

2.2 | Variant calling

We aligned all samples to the H. annuus XRQ genome using BWA

(version 0.7.9a), removed PCR duplicates using samtools, realigned

potential indels using GATK and called variants using FREEBAYES (ver-

sion 1.1.0) (Badouin et al., 2017; Garrison & Marth, 2012; Li & Dur-

bin, 2010; Li et al., 2009; McKenna et al., 2010). In all cases, we

used default parameters. For this analysis, we selected di-allelic SNPs

with QUAL >30, and outside of regions known to contain transpos-

able elements, using vcflib (https://github.com/ekg/vcflib).

2.3 | Testing for index switching

To identify whether index switching is increased in samples

sequenced on the HiSeq X, we leveraged the fact that individual

samples in our data set were either sequenced on the HiSeq X or

the HiSeq 2500. Therefore, we cannot only estimate index switching
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rates on the HiSeq X, but also tell if it is higher than for previous

technology. Crucially, the method proposed here does not require

index switching to actually alter genotype calls. Whether index

switching changes genotype calls would depend on the samples

sequenced, the overall depth and the genotyping program, and

therefore, genotype changes may not be a reliable signal of the level

of index switching occurring.

Previous work has suggested that index switching is occurring

for 1%–10% of reads depending on factors during library preparation

and sequencing (Sinha et al., 2017). This low level means that, for

our data set, at a single locus, an allele acquired because of index

switching is likely to only have one read, given moderate overall read

depth. We looked for these unbalanced heterozygotes (i.e., one read

for allele 1, many reads for allele 2) with ≥5 reads total and asked if

the rare allele (i.e., the undersequenced allele) was found in other

samples sequenced in the same lane (which we refer to as “allele

sharing”). It should be noted that these unbalanced heterozygotes

need not actually be called as heterozygotes. Depending on the base

quality scores and the overall sequencing depth, they may be called

as homozygotes. We then calculated p̂, the binomial probability that

the rare allele should be found in one or more of the samples based

on f, the allele frequency for all samples sequenced with that

machine (excluding the unbalanced focal individual) and n, the num-

ber of other samples with genotypes in the lane (1).

p̂ ¼ 1� ð1� fÞ2n: (1)

We then plotted p̂, the binomial probability of cases where the

allele is present in at least one copy in the other samples from the

lane, against p, the observed proportion of cases with allele sharing.

We fit a line to this relationship using a generalized additive model

in the stat_smooth command from ggplot2 (Wickham, 2016). If index

switching is not occurring, we expect a straight line at p̂ ¼ p. Alter-

natively, if index switching is occurring, we expect p̂[ p indicating

greater sharing of undersequenced alleles within a lane than

expected by chance. These proportions were calculated indepen-

dently for HiSeq 2500 and HiSeq X samples, using the first 500,000

variable sites in the genome.

As a control, for each unbalanced heterozygote, we calculated

the p using the same number of genotyped samples sequenced using

the same machine, but not the same lane. This control should not

show evidence of index switching.

It is important to note that if samples were sorted into sequencing

lanes based on a genetic grouping (e.g., species or population), we

would find p̂[ p in the absence of index switching. In our data set, this

is not the case, as samples were randomly assigned into lanes.

2.4 | Simulations

To explore the sensitivity of our measure of index switching, we

bioinformatically switched reads in our vcf file, randomly selecting 0,

0.1, 0.5, 1, 5 or 10 per cent of reads at each site across all individu-

als to be switched. Switched reads were removed from the individual

(i.e., reducing read depth) and added to another individual sequenced

in the same lane (i.e., increasing read depth). We then recalculated

genotypes simply by assigning samples containing reads for both

alleles as heterozygotes. These simulations were run through the

same algorithm to detect index switching.

Our initial simulation called heterozygotes regardless of allelic

balance, while FreeBayes and other genotyping programmes may call

a genotype as homozygous if there is an extreme bias in read depth

between alleles. To approximate this, we also ran the same simula-

tion but required heterozygotes to have allele balance >20% (i.e.,

>20% of reads must come from each allele).

3 | RESULTS

We fail to find evidence that index switching is occurring in our data

set. For samples sequenced on both machines, the observed propor-

tion of allele sharing within a lane tracked the predicted proportion

closely (Figure 1, Figure S1). This was consistent with the pattern

seen in our control that used samples from different lanes. Despite

this, we find that our method is able to identify index switching in

the simulated data set. In particular, we find elevated allele sharing

around p̂ = 0.2, even when index switching only represents 1% of

reads (Figure 2). In our data set, p̂ = 0.2 corresponds to rare alleles

F IGURE 1 (a) The relationship between predicted allele sharing
and observed allele sharing for samples sequenced on the HiSeq
2500 (solid line) and HiSeq X (dashed line). Allele sharing was
calculated for samples sequenced together in a lane (blue) and for a
control group sequenced in different lanes (red) [Colour figure can
be viewed at wileyonlinelibrary.com]

OWENS ET AL. | 171



(minor allele frequency <5%). This makes sense because common

alleles are expected to have high allele sharing even in the absence

of index switching which makes the signal more difficult to observe.

When using simulations that required allelic balance to call heterozy-

gotes, the same pattern was produced (Figure S2).

4 | DISCUSSION

Widespread, undetected index switching represents a nightmare sce-

nario for molecular ecologists worldwide. Here, we show that in one

exemplar data set, index switching is not higher in samples

sequenced on the new Illumina patterned flow cells and is likely

below 1% of reads. Furthermore, we provide a way to visualize

index switching for sequenced genomic data sets.

4.1 | Post hoc index switching detection

The method presented here detects the sharing of rare alleles within

lanes that index switching could produce. Previous methods for

detecting index switching relied on specific a priori library prepara-

tion, while the method described here can be applied to data already

sequenced before the issue of index switching was brought to light

(Sinha et al., 2017); however, it does rely on the random assignment

of samples to sequencing lanes. If genetically related samples are

clustered in lanes, then a false positive will occur. While our method

relies on visual inspection of data, future programmes could use the

same allele sharing information to specifically estimate the amount

of index switching in a Bayesian or likelihood model.

Index switching presents similar issues as contamination, a prob-

lem long recognized in human genomic studies (Jun et al., 2012).

Contamination is when DNA of multiple samples is combined during

DNA extraction or library preparation and also results in misat-

tributed reads. This issue has been tackled in a human genomics

context, but has unique challenges for nonmodel organisms. Studies

using nonmodel organisms often work with much lower coverage

per sample, have less accurate or no prior allele frequency informa-

tion and poorer prior expectations of overall heterozygosity when

compared to human studies. Nevertheless, methods for removing

contamination may be repurposed to incorporate information from

entire sequencing lanes to remove index switching (Flickinger, Jun,

Abecasis, Boehnke, & Kang, 2015).

4.2 | Why don’t we find index switching?

Our results are clearly different from Sinha et al. who found index

switching affecting 5%–10% of reads. One possibility could be that

this is caused by differences in sequencing library preparation. Sinha

et al. used cDNA as starting material and the Nextera tagmentation

technology from Illumina to fragment the DNA and tag the fragments

1% 5% 10%

0% 0.1% 0.5%

0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

p: predicted allele sharing^

p:
 o

bs
er

ve
d 

al
le

le
 s

ha
rin

g

Type
Control
Within lane
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switching. The 0% index switching test controls for the recalling of genotypes that occur during simulated index switching. Allele sharing was
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with adapters, whereas we used genomic DNA sheared using ultra-

sonication and then added the adapters to the fragments via enzy-

matic ligation. Furthermore, our protocol included a depletion step, to

reduce repetitive elements in the genome that is not present in the

Nextera XT protocol. However, the final step of library preparation is

substantially equivalent between the two approaches; DNA fragments

with short adapters at their extremities are PCR-amplified using pri-

mers that complete the adapters and add unique sequence indices,

allowing pooling of different samples in a single flow cell. Given that

carry-over of free-indexed primers from this step is the likely cause of

index switching during the ExAmp procedure (Sinha et al., 2017), the

two approaches can be confidently compared for the purpose of

investigating the occurrence of index switching.

Another possible difference between the two experiments is that

while the Nextera XT kit uses dual indices (i.e., both the P5 and P7

adapters are indexed), we used only a single index on the P7 adap-

ter. This has the potential to halve index switching in our data set,

assuming that switching occurs equally from both adapters. If the

unindexed P5 adapter was to be replaced in our data set, this would

not result in index switching because no index is present. For a dual-

indexed library, it would result in index switching.

Finally, the main difference we noticed between our libraries and

the one shown in Figure 4B of Sinha et al. (2017) is the large

amount of free adapters/primers that are found in the latter (com-

pare with the Bioanalyzer plot for one of our libraries in Figure 3a).

Our enhanced clean-up efficiency could be due to fact that while

the Nextera XT kit recommends a single clean-up step with 0.6 vol-

umes of Agencourt AMPure XP beads, we performed two rounds of

clean-up with 1.6 volumes of MagNA beads (the maximum size of

the fragments that are removed during beads clean-up is, approxi-

mately, inversely proportional to the ratio of bead solution that is

added to the reaction—smaller volumes of beads should therefore

be more efficient at removing free adapter/primers). However, a sin-

gle clean-up with 1 volume of MagNA beads was sufficient to com-

pletely remove primers/adapters from our libraries (Figure 3b).

MagNA and AMPure XP beads have been shown to have compara-

ble recovery efficiency and size discrimination (Rohland & Reich,

2012), and this is confirmed by our experience. While it is possible

that, because of their different design, libraries produced using the

Nextera XT protocol simply contain a much larger amount of free

adapters/primers that cannot be efficiently removed with one single

clean-up step, we did not directly test this.

4.3 | When is index switching confounding?

Certain kinds of experiments are more likely to be affected by index

switching. Gene expression quantification using RNAseq is especially

sensitive because highly expressed genes can bleed into other sam-

ples, homogenizing expression measures with lanes. In cancer geno-

mics, low-frequency alleles represented by a minority of reads are

both important and can be produced by index switching. Similar issues

can occur in Pool-seq experiments used in molecular ecology, where

index switching could affect estimation of allele frequencies, slightly

homogenizing differences among pools sequenced in the same lane.

For high-coverage genomic sequencing of diploid organisms, index

switching can produce unbalanced heterozygotes, where one allele is

(a)

(b)

F IGURE 3 Bioanalyzer plots for
representative whole-genome shotgun
sequencing libraries used in this study,
after the final amplification and clean-up
step. The plot shows the abundance of
fragments of different sizes in the library
(measured in fluorescence units, FU). The
peaks at 35 bp (green) and 10,380 bp
(purple) are internal standards. Free index
primers should appear as a peak at ~50 bp.
(a) Library that underwent two rounds of
clean-up after PCR amplification, each
using 1.6 volumes of MagNA beads. (b)
Library that underwent a single round of
clean-up with 1 volume of MagNA beads
[Colour figure can be viewed at
wileyonlinelibrary.com]
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represented by one or two reads and the other by many reads. These

present a genotyping challenge because unbalanced heterozygotes

can also be produced naturally by stochastic sampling of alleles or via

PCR bias during library prep. Future genotyping programmes may use

haplotype information of reads along with sequencing lane identity to

detect when index switching is occurring and remove contaminants. In

low-coverage genome sequencing, identifying individual instances of

index switching may be impossible and will result in an increased rate

of false heterozygote genotype calls (when an index is switched

among alternate homozygotes) and slightly increased quality scores

for heterozygotes miscalled as homozygotes (when all sequenced

reads represent only one allele of the heterozygote and an index is

switched from a homozygote with the same allele).

Which samples are multiplexed in a lane has a large effect on

whether index switching is a problem. If each sample represents a

distinct, distantly related species, then misattributed reads are unli-

kely to align to a reference genome. If all samples are from a single

population, misattributed reads are more likely to carry alleles

already present. In the worst case scenario, samples of closely

related species or distantly related populations with misattributed

reads could be mistakenly inferred as novel alleles. This could reduce

divergence estimates like FST or confuse phylogenetic signals.

Although stringent allelic balance cut-offs for heterozygous geno-

types would remove the false heterozygotes from index switching, it

may also remove true heterozygotes or miscall them as homozy-

gotes, especially at lower (<10) average read depth.

Whether low levels of index switching result in incorrect genotype

calls is partially determined by the genotyping programme. In this

study, we used FreeBayes, which, similar to GATK, uses a Bayesian

model incorporating information across samples including allele bal-

ance. False heterozygote calls from index switching may be less likely

with Bayesian methods than more simplistic genotyping models but

could also result in the removal of real variants because of skewing of

data set wide allelic balance, a parameter often used for filtering. In

the same vein, joint genotyping allows for variants to be called at

lower coverage if they are found in other individuals in the sample set,

but this is also the exact pattern produced by index switching.

4.4 | Best practices to avoid index switching

Although we failed to detect index switching here, it may be prudent

to employ techniques for avoiding the issue. Two main suggestions

have been proposed, and we support both: (i) using dual index bar-

codes, so that both indices are unique to a sample and (ii) thoroughly

cleaning library preparations to remove free primers. If sequencing is

already completed and index switching is suspected, then bioinfor-

matic filters can be applied although none are ideal. Filtering for alle-

lic balance (i.e., the fraction of nonreference reads in heterozygotes)

is an obvious choice and is often used to filter variant sets (Li,

2014), but low levels of index switching will produce a small fraction

of heterozygotes so this filter may not be effective. Raising minimum

depth to call genotypes should prevent unbalanced heterozygotes

from being called as heterozygous, but may drastically reduce

genotyping rates. In our data set, unbalanced heterozygotes were

called as homozygotes exclusively when total genotype depth was

≥14 reads (Figure S3), although this exact threshold will be contin-

gent on the specific data set and genotyping program. Simply requir-

ing more stringent allelic balance in individual genotypes will

undoubtedly undercall true heterozygotes, potentially a worse prob-

lem, although future genotyping programmes may take this informa-

tion into account intelligently (e.g., Flickinger et al., 2015). Beyond

this, researchers should be more aware of what samples are multi-

plexed together, a process that is often determined by the sequenc-

ing facility without regard to sample identity.

5 | CONCLUSION

We have failed to find evidence for index switching here, but we

certainly do not make the claim that it cannot or does not happen.

However, we would like to make two points: (i) index switching does

not always occur and (ii) vigilance is necessary. With greater atten-

tion to this problem, research laboratories and companies can spend

time and effort creating molecular protocols to reduce this issue and

bioinformatic programs to detect or remove misattributed reads. Like

all genotyping methods, errors are inevitable, but by better under-

standing their source, we can sort signal from noise.
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