B3C Bioinformatics Workshop

Topic 6: RNAseq and analysis of
differential gene expression



Explain how RNAseq is generated and used

|dentity the basic steps to align and analyze
RNAseq data



1. Introduction and background

2. Overview of the methods and workflow
3. Quantifying expression levels

4. Analyzing patterns in expression

5. Technical considerations



Why use RNAseq?

» Assembling gene space and genome
annotation
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Why use RNAseq?

« Quantify patterns of gene expression

— QOrgan, tissue, or cell types




Why use RNAseq?

« Quantify patterns of gene expression

— Timepoints and development




Why use RNAseq?

« Quantify patterns of gene expression

— Experimental treatments or observational
categories

Control Drought stress



How is RNAseq data generated?

AAAAAAAAA 1) PolyA+RNA captured

« mMRNA is isolated, IO

fragmented, and cDNA is
synthesized and
sequenced

= _— = == 2)RNA fragmented and primed

N
.

e  mmmm  mmmm 3) First strand cDNA synthesized

« Standard lllumina paired-
end data will thus represent
a snapshot of the mRNA — 4) Second strand cDNA synthesized
present in your sample

| — 5) 3’ ends adenylatedand 5’ ends repaired
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\ M / 6) DNA sequencing adapters ligated
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http://aws.labome.com/



Quantifying patterns of gene expression:

1. RNAseq extraction protocol & seguencing

Clean and filter reads

Map reads to a reference

> W I

Count number of reads per gene in each
individual

5. Statistical analysis of differences in read
counts



« Cleaning and filtering is particularly important for
de novo transcriptome assembly

« For expression analysis discard outlier samples
Recommended tools

QC: Fastgc
Trimming/filtering: Trimmomatic, Fastx, SnoWhite



* Aggressive trimming and spurious
alignments of short reads can lead to
inaccurate estimates of gene expression
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Quantifying patterns of gene expression:
1. RNAseq extraction protocol & seguencing

Clean and filter reads

Map reads to a reference

wll S A

Count number of reads per gene in each
individual

5. Statistical analysis of differences in read
counts



RNA-Seq reads
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Challenge 1: Mapping reads across intron-
exon boundaries

Primary RNA transcript The genome sequence looks like this:

N o1 e Bionzon | Bxona

RNA processing [T —
Read fails to map across intron

Spliced RNA
o000 Exonl Exon2 Exon3 The transcriptome sequence looks like this:
5' cap Poly-A tail
5" untranslated 3’ untranslated 2ot - =l -
\reg'on Y i Read maps correctly
— T e Some reads span two exons,

and would not map to the
genome using conventional
approaches

Our filtered RNAseq reads come
from the mature transcript

http://philschatz.com/biology-concepts-book/



Challenge 1: Mapping reads across intron-
exon boundaries

Solutions:
« Map reads to a transcriptome (e.g. RSEM)

« Exon first mapping to genome (e.qg. TopHat)

— Use an “unspliced read aligner” to map the reads within
a single exon

— Split unmapped reads into shorter segments and attempt
to re-map
« Seed and extend methods map small chunks to the
genome and extend to splice sites (e.g. GSNAP)



Exon-First Approach

Exon 1 Exon 2

i Seed matching

L
i Extend

yoeoluddy pusix3-pess



Challenge 2: Identitying abundance of
alternatively spliced transcripts

] 2 3 1 3

Splice variant #1 Splice variant #2

It there are two known splice variants, a read spanning
exon 1 & 2 or 1 & 3 will identity which variant is present

Splice variant #1 Splice variant #2

It a read aligns to exon 2 then differential expression
of isoforms can be inferred, relative to the expression
levels of other isoforms



Challenge 2: |dentifying abundance of
alternatively spliced transcripts

Solutions:

 |dentify expression levels for reads spanning
diagnostic splice sites, relative to expression levels
IN non-diagnostic exons

« Multiple complex algorithms for sorting reads
based on compatibility with different isoform
models (e.g. Cufflinks)



Challenge 3: Dealing with multireads at the gene-
and isoform-level

28 reads align to the contig What if there is a paralog?

Transcriptome contig

Partially paralogous gene
825 base pairs long y paralogous g

Both paralogs and alternatively spliced transcripts (isoforms) can
give the problem of “multireads”: a read that maps with high score
to several places

Li et al. (2010) found that 17% (mouse) or 52% (maize) of reads
were multireads



Challenge 3: Dealing with multireads at the
gene- and isoform-level

Solutions:
* Discard (only use uniguely mapping reads)
« “rescue” multireads by allocating fractions of them

INn proportion to the number of uniquely mapping
reads mapping to each contig

« ML algorithms to assign multireads and sum across
all isoforms for gene-level estimates (e.g. RSEM)



Practical approaches: RSEM

« Single pipeline to align and estimate expression

« Wil estimate isoform-level expression counts (if
isoforms for each gene are identified)

« No sequenced genome needed (a reasonable
reference transcriptome can be built de novo
using Trinity in non-model organisms)

* |n the exercise following lecture, we will work
through a simple example dataset with RSEM



Practical approaches: TopHat + Cufflinks

« TopHat + Cufflinks provide a joint approach to
mapping reads to the genome and require a

good reference genome

* Tophat may be less accurate than RSEM:

FC Spearman Correlation

Correlation with expression
level based on gene model
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Quantifying patterns of gene expression:

1.

RNAseq extraction protocol & sequencing
Clean and filter reads

Map reads to a reference

>~ W

Count number of reads per gene in each
iIndividual

Statistical analysis of differences in read
counts



RNAseqg normalization needed due to two systematic
causes of variation:

1) Differences in the amount sequenced among
individuals

2) More reads from a long transcript than from a short
transcript

Read count =12

1 I— 2 e
Low High

3 I 4 e
Short transcript Long transcript
Read count = 20 Read count = 55

Garber et al. 2011



RNAseqg normalization needed due to two systematic
causes of variation:

1) Differences in the amount sequenced among
individuals

2) More reads from a long transcript than from a short
transcript

Read count =12
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- O — o
© [T
o}
-——= == e —_ o
3 I i 4
Short transcript Long transcript 1 2 3 4 1 2 3 4

Read count = 20 Read count = 55
Garber et al. 2011



FPKM: Fragments Per Kilobase of transcript per Million
reads mapped

« normalizes by transcript length and the total size of
the mapped library

e correct both issues

Garber et al. 2011



RPKM vs. FPKM

FPKM: Fragments Per Kilobase of transcript per Million
reads mapped

RPKM: Reads Per Kilobase of transcript per Million
reads mapped

FPKM corrects for the non-independence of two reads
when you have paired-end data:

A B

Both reads map correctly One read fails to map
> £ —

RPKM would count that A had 2x more expression than B, giving an
underestimate for B. FPKM adjusts this count for paired end data



Practical implementation

Simple: most programs will estimate FPKM or RPKM

for you

Sample output from RSEM

gene_id
comp10000_c0
comp100017_cO
comp10002_cO0
comp100037_cO0
comp100052_cO0
comp10005_cO0
comp100064 cO0
comp10006_cO

transcript_id(s)
comp10000_c0_seql
comp100017_c0_seql
comp10002_c0_seql
comp100037_c0_seql
comp100052_c0_seql
compl10005_cO0_seql
comp100064 cO_seql
compl10006 _cO0 _seql

length

1502
735
4182
1921
679
1764
631
2680

effective_length

1299.85
532.87
3979.85
1718.85
476.89
1561.85
428.92
2477.85

expected_count

TPM
60.1
48.87
45.8

FPKM



Align reads and estimate expression levels for
three pine samples to the transcriptome reference

hot cool

pi
pi B
pi B
=
=
=




1. Follow the instructions on the github Topic 6 page to
align and assess transcript abundance with RSEM
(PART 1)

3. Answer the following questions:

What is the expected count of comp996_cO for each
individual?

What expression measure would you use to compare
gene expression between different genes and why
(expected counts versus FPKM)?



Quantifying patterns of gene expression:
1. RNAseq extraction protocol & seguencing
Clean and filter reads

Map reads to a reference

>~ W

Count number of reads per gene in each
individual

5. Statistical analysis of differences in read
counts




Fitting models to expression data

cool

Iy
b b

hdd
hdd

6 individuals per treatment (1 library/ind)

What genes are ditferentially expressed in response to

temperature”




compl@0109_c2
compl0109_c20
compl@109_c22
compl@0109_c23
compl@109_c25
compl0109_c31
compl@109_c32
compl@0109_c33
compl@0109_c35
compl@109_c36
compl@109_c37
compl0109_c38
compl@109_c40
compl@109_c41l
compl@109_c42
compl@0109_c7
compl@10_co

0.00
0.00
176.00
0.00
0.00
0.00
0.00
1.00
148.00
0.00
0.00
1.00
0.00
96.00
15.00
0.00
483.00

0.00 0.00
0.00 0.00
13.00 5.00
0.00 0.00
0.00 2.00
0.00 0.00
0.00 0.00
0.00 0.00
403.87 327.20
0.00 0.00
0.00 0.00
1.00 0.00
0.00 0.00
51.00 ©61.00
0.00 0.00
0.00 0.00

How to go from raw expression counts

.00
.00
.00
.00
.00
.00
.00
.00
117.14
0.00
0.00
0.00
0.00
24.00
1.00
0.00

OO ONVcOUSEeS®

2125.91 2397.11 526.00

To biologically meaningful results”



Approaches:

0 analysis:

1. Differentia

gene expression on gene-by-

gene basis (e.g. DESeq, EdgeR, limma)

e Examine h

ow each gene is affected by a factor

(e.g. treatment)

« Use glms to identify genes with significant
expression differences among groups

2. Patterns of gene co-expression

* |dentify clusters of genes that are regulated

together



Biological variation
« real differences between samples due to:

1) uncontrolled sources that should be homogenous across
{reatments

2) controlled sources that arise from experimental treatment/design
Technical variation

« arises from measurement error inherent in the sequencing process
(sequencing and library prep)

cool

IYYVIEYY
bhh hbd




 Dbiological replication (multiple individuals per treatment)

 technical replication (here, there is no technical
replication)

Regression of normalized counts on variable(s) of interest
« fold-change in expression among factor levels (log2(B/A))

« estimates of significance

cool

IYYVIEYY
bhh hbd




« (Count data can be modeled using the Poisson
distribution (mean=variance)

» Biological variance creates over-dispersion so the
mean does not equal the variance

W Poisson
B Negative Binomial

1e+08
|

1e+04

1e+00
|

Pooled gene-level variance (log10 scale

5 50 500 5000 50000

Mean gene expression level (log10 scale)



For the negative binomial:

« var=p+ ou?

¢ b =CV (SD/mean)

« ¢ Is called the dispersion parameter

« Total CV?in expression = Technical CV? + Biological
CV?

Biological CV (BCV) is the coefficient of variation with
which the (unknown) true abundance of the gene varies

between biological replicates.



Empirical Bayes for gene expression

« Many RNAseqg/microarray approaches use an
empirical Bayes method to “borrow”
iInformation across genes

* Prevents outliers from driving differential
expression




Who were the best batters?



the worst batters?

name

Frank Abercrombie
Horace Allen

Pete Allen

Walter Alston

Bill Andrus

AB

cleReN=R=N""
O = R

the best batters?

name

Jeff Banister
Doc Bass

Steve Biras

C. B. Burns
Jackie Gallagher

r—sb—Al\Jr—s»—A:E
.—a.—aw»—a.—ag

average

o O O O O

average

O W G W G W'y



Shrinkage: EB tends to move
estimates towards the mean

/ Estimate and measured average are the
same (1:1)

f Better estimates (more data) for those
points close to the line

o
w

EB estimate is lowger than actual estimate

e
1
L ]
o
oo 10000
o.. N
RS 1000
o, . ° .
e e * . : 100
_________ B 10
LTy

0.2+

EB estimate is
higher than actual
estimate

yes batting average

Emprcrih

1 1 L ] )
0.0 0.2 05 0.8 1.0
Batting average

http://varianceexplained.org/r/empirical_bayes_baseball/



petter estimates of batting averages

name
Rogers Hornsby
Shoeless Joe Jackson
Ed Delahanty

Billy Hamilton
Harry Heilmann

name
Bill Bergen

Ray Oyler

John Vukovich
John Humphries
George Baker

516
221
90
52
74

H AB
2930 8173
1772 4981
2596 7505
2158 6268
2660 7787

3028
1265
559
364
474

average
0.358
0.356
0.346
0.344
0.342

average
0.170
0.175
0.161
0.143
0.156

eb_estimate
0.355
0.350
0.343
0.340
0.339

eb_estimate
0.178
0.191
0.196
0.196
0.196



Estimating Dispersion

- common dispersion: same Biological CV among genes
(i.e. proportional relationship between gene-wise
standard deviations and gene-wise means is the same
for all genes)

— gene expression levels have non-identical and dependent
distribution between genes (common dispersion too naive)

« tagwise dispersion: the common dispersion estimate is
modified for each gene based on a Empirical Bayes
estimate of the per-gene relationship between mean and
variance



Using the approach from edgeR as an example

Model fitting results in estimation of log fold change (logFC) in
expression, p-value, and estimation of False Discovery Rate

(FDR)

logFC logCPM LR PValue FDR
comp520_c0 8.997022 10.663572 175.7591 4.087401e-40 7.584581e-36
comp626_c0 8.48939% 8.474038 166.4056 4.510882e-38 4.185197e-34
comp29033_cO -3.427787 2.914473 153.7321 2.650165e-35 1.639215e-31
comp3737_cO® 4.121830 5.796822 134.5117 4.222342e-31 1.958744e-27
comp6840_cO® 4.319808 5.063555 126.0793 2.954429e-29 1.023962e-25
compl4716_c@ -2.772885 5.115474 125.8532 3.310934e-29 1.023962e-25

« EdgeR allows multiple factors for more complex designs
(as does Limma)



Approaches to visualizing trends in data: Multi-Dimensional
Scaling plot (like principle components, but allows missing
data)
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Approaches to visualizing trends in data: Heatmaps to show
patterns of expression in the most differentially expressed
genes

Color Key
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Numerous programs have been developed to
detect differences in gene expression:

« DESeq

* edgeR

« [immaQN
* [immaVoom
« PoissonSeq
o CuffDiff

* baySeg

Fortunately, they are relatively similar in their power and accuracy;
edgeR is consistently found to slightly outperform many others



* Run EdgeR to compare expression

between climate treatments (PART Il)

* Answer the following questions

1.

How many genes are differentially expressed by treatment in the
simple contrast of C vs H (using "cold_hot_expression.txt")? How
does the choice of FDR cutoff or p-value affect this number? What
happens if you include genes in your analysis with low or no
expression across all of the samples?

How many genes are differentially expressed in the three-way
contrast (using "cold_hot_mwh_expression.txt")? Which treatment
is driving differential expression here”? How do you know?

How much does model fitting with common dispersion vs. tagwise
dispersion affect the answers you get from the data” (think in
terrr;s of the number of DE genes, the evidence for a single gene,
etc.



Gene co-expression networks: Finding genes that are
expressed in the same way across treatments/tissues

Genes that tend to be up-regulated and down-
regulated together will have higher correlation in their

expression counts across treatments:
« (Calculate pairwise correlations between each gene

« Perform clustering algorithm on the correlation table,
grouping like with like

« Can also group genes that have opposite patterns of
expression

* Requires many treatments to get high power



Example (from WGCNA): 8 clusters showing
gene expression in lodgepole pine over 7

P2

Mean—centered expression

CW HD MD MWI18 MW MWbs MWh

CW HD MD MW18 MW MWbs MWh
P7

Mean—centered expression

CW HD MD MW18 MW MWbs MWh

Yeaman et al. (2014)

CW HD MD MW18 MW MWbs MWh

CW HD MD MWI8 MW MWbs MWh

l ) T | L) ' 1 T
CW HD MD MW18 MW MWbs MWh

P8

CW HD MD MWI8 MW MWbs MWh



Now what?

* As with many approaches in genomics,
there is a "too much data” problem

* Annotation of genes

« Usetul for identification of genes involved
In plasticity and response:
— are these genes also involved in adaptation
— do they have signatures of selection?

« Strong experimental design
— Move from descriptive to biological insight



Depth of coverage?
« Dependent on:
1. study organism
2. transcriptome size
3. purpose of your study
* Low power if < 50 counts per million per gene

* Too many individuals per lane can increase your
technical variation

* 10 million reads per sample is a benchmark from
which to start for most eukaryotes

 Biological replication is often more valuable than
higher depth of coverage per individual



* Variation among cells of the same type
sampled at the same time (single-cell
seguencing)

* Variation among cell types of the same
tissue (micro-dissection)

* No substitute for biological replication

 Important that replicates be randomized
during sample prep and sequencing due
to batch effects (RNA extraction, library
prep and sequencing).



De novo assembly (lllumina reads)

« De novo assembly needs large amounts of RAM

« Lodgepole pine transcriptome assembly:
40Gbp of sequence data = 200 GB RAM

« Haploid tissue from a single individual is best

« Feasible to pool data from multiple individuals but
difficult to know whether putative isoforms are “good”
or just different genotypes

 Pooling from multiple tissues, treatments,
developmental time points

 Long read transcriptome sequencing (e.g., PacBio) is
an alternative (no assembly required
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Rapaport et al. 2013. Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data.
Genome Biology. 14:R95.

Seyednasrollah et al. 2013. Comparison of software packages for detecting differential expression in RNA-seq
studies. Briefings in Bioinformatics.

Tarazona et al. 2011. Differential expression in RNA-seq: A matter of depth. Genome Res. 21: 2213-2223

http://www.labome.com/method/RNA-seqg-Using-Next-Generation-Sequencing.html

http://deweylab.biostat.wisc.edu/rsem/
http://www.mi.fu-berlin.de/wiki/pub/ABI/GenomicsLecture12Materials/rnaseqi.pdf

http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf

http://rnaseq.uoregon.edu/#analysis-trimming



