
UBC Bioinformatics Workshop
!

Topic 6: RNAseq and analysis of 
differential gene expression!



Explain how RNAseq is generated and used!

Identify the basic steps to align and analyze 
RNAseq data!

!

!

!

Lecture outcomes!



1.  Introduction and background!

2.  Overview of the methods and workflow!

3.  Quantifying expression levels!

4.  Analyzing patterns in expression!

5.  Technical considerations!

Outline!



Why use RNAseq?!

•  Assembling gene space and genome 
annotation!

Introduction and background!



Why use RNAseq?!

•  Genotyping within the transcribed regions!

Introduction and background!



Why use RNAseq?!

•  Quantify patterns of gene expression!

– Organ, tissue, or cell types!

Introduction and background!



Why use RNAseq?!

•  Quantify patterns of gene expression!

– Timepoints and development!

Introduction and background!



Why use RNAseq?!

•  Quantify patterns of gene expression!

– Experimental treatments or observational 
categories!

Introduction and background!



How is RNAseq data generated?!

http://aws.labome.com/	

•  mRNA is isolated, 
fragmented, and cDNA is 
synthesized  and 
sequenced!

•  Standard Illumina paired-
end data will thus represent 
a snapshot of the mRNA 
present in your sample !

!
!

Introduction and background!



1.  RNAseq extraction protocol & sequencing!

2.  Clean and filter reads!

3.  Map reads to a reference!

4.  Count number of reads per gene in each 
individual!

5.  Statistical analysis of differences in read 
counts!

Quantifying patterns of gene expression:!
!

Overview of the methods !



•  Cleaning and filtering is particularly important for 
de novo transcriptome assembly!

•  For expression analysis discard outlier samples !
!
Recommended tools!

QC: Fastqc!
 Trimming/filtering: Trimmomatic, Fastx, SnoWhite!

Overview of the methods !



•  Aggressive trimming and spurious 
alignments of short reads can lead to 
inaccurate estimates of gene expression!

Overview of the methods !

Williams et al 2016	



1.  RNAseq extraction protocol & sequencing!

2.  Clean and filter reads!

3.  Map reads to a reference!

4.  Count number of reads per gene in each 
individual!

5.  Statistical analysis of differences in read 
counts!

Quantifying patterns of gene expression:!
!

Overview of the methods !



Haas & Zody 2010 Nature Biotechnology!
Assembling and Aligning!

Quantifying expression levels!



Challenge 1: Mapping reads across intron-
exon boundaries!

 !

Our filtered RNAseq reads come 
from the mature transcript !

The	genome	sequence	looks	like	this:	

The	transcriptome	sequence	looks	like	this:	

Some reads span two exons, 
and would not map to the 
genome using conventional 
approaches!

Read	fails	to	map	across	intron	

Read	maps	correctly	

http://philschatz.com/biology-concepts-book/!

Quantifying expression levels!



Challenge 1: Mapping reads across intron-
exon boundaries!
!

Solutions:!
•  Map reads to a transcriptome (e.g. RSEM)!
•  Exon first mapping to genome (e.g. TopHat)!
–  Use an “unspliced read aligner” to map the reads within 

a single exon!
–  Split unmapped reads into shorter segments and attempt 

to re-map!
•  Seed and extend methods map small chunks to the 

genome and extend to splice sites (e.g. GSNAP) !

Quantifying expression levels!



Quantifying expression levels!



Challenge 2: Identifying abundance of 
alternatively spliced transcripts!

Splice	variant	#1	 Splice	variant	#2	

If there are two known splice variants, a read spanning 
exon 1 & 2 or 1 & 3 will identify which variant is present!

Splice	variant	#1	 Splice	variant	#2	

1	 2	 3	

If a read aligns to exon 2 then differential expression 
of isoforms can be inferred, relative to the expression 
levels of other isoforms!

1	 3	

Quantifying expression levels!



Challenge 2: Identifying abundance of 
alternatively spliced transcripts!
!

Solutions:!
•  Identify expression levels for reads spanning 

diagnostic splice sites, relative to expression levels 
in non-diagnostic exons!

•  Multiple complex algorithms for sorting reads 
based on compatibility with different isoform 
models (e.g. Cufflinks)!

Quantifying expression levels!



Challenge 3: Dealing with multireads at the gene- 
and isoform-level!
!

Transcriptome	contig	
825	base	pairs	long	

28	reads	align	to	the	contig	

Partially	paralogous	gene	

What	if	there	is	a	paralog?	
	

Both paralogs and alternatively spliced transcripts (isoforms) can 
give the problem of “multireads”: a read that maps with high score 
to several places!

Li et al. (2010) found that 17% (mouse) or 52% (maize) of reads 
were multireads!

Quantifying expression levels!



Challenge 3: Dealing with multireads at the 
gene- and isoform-level!
!

Solutions:!
•  Discard (only use uniquely mapping reads)!
•  “rescue” multireads by allocating fractions of them 

in proportion to the number of uniquely mapping 
reads mapping to each contig!

•  ML algorithms to assign multireads and sum across 
all isoforms for gene-level estimates (e.g. RSEM) !

Quantifying expression levels!



Practical approaches: RSEM!
•  Single pipeline to align and estimate expression!
•  Will estimate isoform-level expression counts (if 

isoforms for each gene are identified)!
•  No sequenced genome needed (a reasonable 

reference transcriptome can be built de novo 
using Trinity in non-model organisms)!

•  In the exercise following lecture, we will work 
through a simple example dataset with RSEM!

Quantifying expression levels!



Practical approaches: TopHat + Cufflinks!
•  TopHat + Cufflinks provide a joint approach to 

mapping reads to the genome and require a 
good reference genome!

•  Tophat may be less accurate than RSEM:!

Courtesy	of	Eric	Aronesty		
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Quantifying expression levels!



1.  RNAseq extraction protocol & sequencing!

2.  Clean and filter reads!

3.  Map reads to a reference!

4.  Count number of reads per gene in each 
individual!

5.  Statistical analysis of differences in read 
counts!

Quantifying patterns of gene expression:!
!

Overview of the methods !



RNAseq normalization needed due to two systematic 
causes of variation:!
!

1) Differences in the amount sequenced among 
individuals!
!

2) More reads from a long transcript than from a short 
transcript!
!
!
!
!
!
!

Read	count	=	20	 Read	count	=	55	

Read	count	=	55	Read	count	=	12	

Garber et al. 2011!

Analyzing patterns in expression!

 !



RNAseq normalization needed due to two systematic 
causes of variation:!
!

1) Differences in the amount sequenced among 
individuals!
!

2) More reads from a long transcript than from a short 
transcript!
!
!
!
!
!
!Garber et al. 2011!

Read	count	=	20	 Read	count	=	55	

Read	count	=	55	Read	count	=	12	

Analyzing patterns in expression!

 !



!
FPKM: Fragments Per Kilobase of transcript per Million 
reads mapped!
•  normalizes by transcript length and the total size of 

the mapped library!
•  correct both issues!
!
!

Garber	et	al.	2011	

Analyzing patterns in expression!

 !



RPKM vs. FPKM!
FPKM: Fragments Per Kilobase of transcript per Million 
reads mapped!
RPKM: Reads Per Kilobase of transcript per Million 
reads mapped!
!

FPKM corrects for the non-independence of two reads 
when you have paired-end data:!
!
!
!RPKM	would	count	that	A	had	2x	more	expression	than	B,	giving	an	
underestimate	for	B.	FPKM	adjusts	this	count	for	paired	end	data	

Both	reads	map	correctly	 One	read	fails	to	map	
A	 B	

Analyzing patterns in expression!

 !



Practical implementation!
Simple: most programs will estimate FPKM or RPKM 
for you!
!
gene_id	 transcript_id(s)	 length	 effective_length	 expected_count	 TPM	 FPKM	

comp10000_c0	 comp10000_c0_seq1	 1502	 1299.85	 3	 60.1	 34.36	

comp100017_c0	 comp100017_c0_seq1	 735	 532.87	 1	 48.87	 27.94	

comp10002_c0	 comp10002_c0_seq1	 4182	 3979.85	 7	 45.8	 26.19	

comp100037_c0	 comp100037_c0_seq1	 1921	 1718.85	 0	 0	 0	

comp100052_c0	 comp100052_c0_seq1	 679	 476.89	 0	 0	 0	

comp10005_c0	 comp10005_c0_seq1	 1764	 1561.85	 0	 0	 0	

comp100064_c0	 comp100064_c0_seq1	 631	 428.92	 0	 0	 0	

comp10006_c0	 comp10006_c0_seq1	 2680	 2477.85	 4	 42.04	 24.04	

Sample	output	from	RSEM	

Analyzing patterns in expression!

 !



Align reads and estimate expression levels for 
three pine samples to the transcriptome reference!

Tutorial part I!

 !

hot		 cool		



1.  Follow the instructions on the github Topic 6 page to 
align and assess transcript abundance with RSEM 
(PART I)!

3.  Answer the following questions:!

What is the expected count of comp996_c0 for each 
individual?!

What expression measure would you use to compare 
gene expression between different genes and why 
(expected counts versus FPKM)?!

Tutorial part I!

 !



1.  RNAseq extraction protocol & sequencing!

2.  Clean and filter reads!

3.  Map reads to a reference!

4.  Count number of reads per gene in each 
individual!

5.  Statistical analysis of differences in read 
counts!

Quantifying patterns of gene expression:!
!

Overview of the methods !



Fitting models to expression data!
!
!
!
!
!
6 individuals per treatment (1 library/ind)!

What genes are differentially expressed in response to 
temperature?!

hot		 cool		

Analyzing patterns in expression!

 !



How to go from raw expression counts!

To biologically meaningful results?!

Analyzing patterns in expression!

 !



Approaches to analysis:!
1.  Differential gene expression on gene-by-

gene basis (e.g. DESeq, EdgeR, limma)!
•  Examine how each gene is affected by a factor 

(e.g. treatment)!
•  Use glms to identify genes with significant 

expression differences among groups!

2.  Patterns of gene co-expression !

•  Identify clusters of genes that are regulated 
together!

Analyzing patterns in expression!

 !



Biological variation !
•  real differences between samples due to:!
   1) uncontrolled sources that should be homogenous across 

treatments!
   2) controlled sources that arise from experimental treatment/design!
Technical variation !
•  arises from measurement error inherent in the sequencing process 

(sequencing and library prep)!

hot		 cool		

Analyzing patterns in expression!

 !



•  biological replication (multiple individuals per treatment)!
•  technical replication (here, there is no technical 

replication)!
!
Regression of normalized counts on variable(s) of interest!
•  fold-change in expression among factor levels (log2(B/A))!
•  estimates of significance!

hot		 cool		

Analyzing patterns in expression!

 !



•  Count data can be modeled using the Poisson 
distribution (mean=variance)!

•  Biological variance creates over-dispersion so the 
mean does not equal the variance !

Analyzing patterns in expression!

 !



For the negative binomial:!
•  var=μ+ φμ2!

•  √φ = CV (SD/mean)!
•  φ is called the dispersion parameter!
•  Total CV2 in expression = Technical CV2 + Biological 

CV2!

Biological CV (BCV) is the coefficient of variation with 
which the (unknown) true abundance of the gene varies 
between biological replicates. !
!

Analyzing patterns in expression!

 !



Empirical Bayes for gene expression!
•  Many RNAseq/microarray approaches use an 

empirical Bayes method to “borrow” 
information across genes!

•  Prevents outliers from driving differential 
expression!

Analyzing patterns in expression!

 !



Who were the best batters?!



the worst batters?!

the best batters?!



Shrinkage: EB tends to move 
estimates towards the mean!

http://varianceexplained.org/r/empirical_bayes_baseball/!

Estimate and measured average are the 
same (1:1)!
!
Better estimates (more data) for those 
points close to the line!

EB estimate is lower than actual estimate !
EB estimate is 
higher than actual 
estimate !



better estimates of batting averages!



Estimating Dispersion!
•  common dispersion: same Biological CV among genes 

(i.e. proportional relationship between gene-wise 
standard deviations and gene-wise means is the same 
for all genes)!

!
–  gene expression levels have non-identical and dependent 

distribution between genes (common dispersion too naïve)!

•  tagwise dispersion: the common dispersion estimate is 
modified for each gene based on a Empirical Bayes 
estimate of the per-gene relationship between mean and 
variance!

Analyzing patterns in expression!

 !



Using the approach from edgeR as an example!
Model fitting results in estimation of log fold change (logFC) in 
expression, p-value, and estimation of False Discovery Rate 
(FDR)!
!
!
!
!

•  EdgeR allows multiple factors for more complex designs 
(as does Limma)!

Analyzing patterns in expression!

 !



Approaches to visualizing trends in data: Multi-Dimensional 
Scaling plot (like principle components, but allows missing 
data)!
!
!

-1 0 1 2

-1
.0

-0
.5

0.
0

0.
5

1.
0

Leading logFC dim 1

Le
ad

in
g 

lo
gF

C
 d

im
 2

C1

C2

C3

C4

C5

C6
H1

H2

H3

H4

H5

H6

Analyzing patterns in expression!

 !



Approaches to visualizing trends in data: Heatmaps to show 
patterns of expression in the most differentially expressed 
genes!
!
!
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Analyzing patterns in expression!

 !



Numerous programs have been developed to 
detect differences in gene expression:!
•  DESeq!
•  edgeR!
•  limmaQN!
•  limmaVoom!
•  PoissonSeq!
•  CuffDiff!
•  baySeq!

Fortunately, they are relatively similar in their power and accuracy; 
edgeR is consistently found to slightly outperform many others!

Analyzing patterns in expression!

 !



•  Run EdgeR to compare expression 
between climate treatments (PART II)!
•  Answer the following questions!
1.  How many genes are differentially expressed by treatment in the 

simple contrast of C vs H (using "cold_hot_expression.txt")? How 
does the choice of FDR cutoff or p-value affect this number? What 
happens if you include genes in your analysis with low or no 
expression across all of the samples?!

2.  How many genes are differentially expressed in the three-way 
contrast (using "cold_hot_mwh_expression.txt")? Which treatment 
is driving differential expression here? How do you know?!

!
3.  How much does model fitting with common dispersion vs. tagwise 

dispersion affect the answers you get from the data? (think in 
terms of the number of DE genes, the evidence for a single gene, 
etc.)!

Tutorial part II!

 !



Gene co-expression networks: Finding genes that are 
expressed in the same way across treatments/tissues!

Genes that tend to be up-regulated and down-
regulated together will have higher correlation in their 
expression counts across treatments:!

•  Calculate pairwise correlations between each gene!

•  Perform clustering algorithm on the correlation table, 
grouping like with like!

•  Can also group genes that have opposite patterns of 
expression!

•  Requires many treatments to get high power!

Analyzing patterns in expression!

 !



Example (from WGCNA): 8 clusters showing 
gene expression in lodgepole pine over 7 
treatments!

Yeaman	et	al.	(2014)	

Analyzing patterns in expression!

 !



•  As with many approaches in genomics, 
there is a “too much data” problem!

•  Annotation of genes !
•  Useful for identification of genes involved 

in plasticity and response: !
– are these genes also involved in adaptation!
– do they have signatures of selection?!

•  Strong experimental design !
– Move from descriptive to biological insight!

Now what?!



Depth of coverage?!
•  Dependent on:!

1. study organism!
2. transcriptome size !
3. purpose of your study!

•  Low power if < 50 counts per million per gene!
•  Too many individuals per lane can increase your 

technical variation!
•  10 million reads per sample is a benchmark from 

which to start for most eukaryotes!
•  Biological replication is often more valuable than 

higher depth of coverage per individual!

Technical considerations!

 !



•  Variation among cells of the same type 
sampled at the same time (single-cell 
sequencing)!

•  Variation among cell types of the same 
tissue (micro-dissection)!

•  No substitute for biological replication!
•  Important that replicates be randomized 

during sample prep and sequencing due 
to batch effects (RNA extraction, library 
prep and sequencing).!

Technical considerations!

 !



De novo assembly (Illumina reads)!
!
•  De novo assembly needs large amounts of RAM !
•  Lodgepole pine transcriptome assembly: !

40Gbp of sequence data = 200 GB RAM!
•  Haploid tissue from a single individual is best !
•  Feasible to pool data from multiple individuals but 

difficult to know whether putative isoforms are “good” 
or just different genotypes!

•  Pooling from multiple tissues, treatments, 
developmental time points!

•  Long read transcriptome sequencing (e.g., PacBio) is 
an alternative (no assembly required)!

Technical considerations!



Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A, McPherson A, Szcześniak MW, Gaffney DJ, Elo 
LL, Zhang X, et al. 2016. A survey of best practices for RNA-seq data analysis. Genome Biology 17: 1–19.!

Garber et al. 2011. Computational methods for transcriptome annotation and quantification using RNA-seq. Nature 
Methods. 8:469-477.!

Marinov et al. 2014. From single-cell to cell-pool transcriptomes: Stochasticity in gene expression and RNA splicing. 
Genome Research. 24:496–510.!

Rapaport et al. 2013. Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data. 
Genome Biology. 14:R95.!

Seyednasrollah et al. 2013. Comparison of software packages for detecting differential expression in RNA-seq 
studies. Briefings in Bioinformatics.!

Tarazona et al. 2011. Differential expression in RNA-seq: A matter of depth. Genome Res. 21: 2213-2223 !

http://www.labome.com/method/RNA-seq-Using-Next-Generation-Sequencing.html!

http://deweylab.biostat.wisc.edu/rsem/!

http://www.mi.fu-berlin.de/wiki/pub/ABI/GenomicsLecture12Materials/rnaseq1.pdf!

http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf!
!
http://rnaseq.uoregon.edu/#analysis-trimming!
!

!

!

Further reading!


