
UBC Bioinformatics Class !

Topic 5: de novo assembly!

•  Identify the difference between de novo
assembly and reference guided alignment!

•  Evaluate two different approaches to de
novo genome assembly !

• Describe how repetitive elements can
hamper proper assembly and compare
approaches that can overcome this
problem!

• Describe approaches for transcriptome/
GBS de novo assembly !

Outcomes!

Introduction!

Introduction!

Introduction!

Aligning to a reference:!
•  Reference guided alignments: align the reads to a

reference genome and looks for differences!
!
Building a reference:!
•  De novo assembly: no previous genome assembly is

used !
•  Comparative genome assembly: assemble a newly

sequenced genome by mapping it on to a reference!
•  Hybrid approach: reference-guided and de novo for

unused reads or de novo and then reference guided
alignments!

Alignment vs assembly !
Introduction!

Adams 2008

Introduction!

GATAGAAGGGTCCGCTCGCTCAGCTACCGGTTTTTATAGATCTA	
Original	sequence	

GATAGAAGGGTCCGCT	
AGAAGGGTCCGCTC	
GGGTCCGCTCGCTCA	
CCGCTCGCTCAGC	
CTCGCTCAGCTACC	
TCAGCTACCGGTTT	
CTACCGGTTTTT	
AGCTACCGGTTTTTAT	
TTTTTATAGATCTA	
	

fragmented	sequences	
from	sequencer		
(reads)	

Introduction!

GATAGAAGGGTCCGCTCGCTCAGCTACCGGTTTTTATAGATCTA	

	 	 	 	 	 	 	 																									TTTTTATAGATCTA		
	 	 	 	 	 	 	 		AGCTACCGGTTTTTAT	
	 	 	 	 	 	 						CAGCTACCGGTTTTT	
	 	 	 	 	 	 				TCAGCTACCGGTTT	
	 	 	 	 					CTCGCTCAGCTACC	
	 	 	 				CCGCTCGCTCAGC	

																		GGGTCCGCTCGCTCA	
								AGAAGGGTCCGCTC	
GATAGAAGGGTCCGCT	
	

assembled	
	
fragmented	sequences	
from	sequencer		
(reads)	

We	want	to	reconstruct	this	from	the	reads	

Introduction!

Simplified scenario!
•  Single strand!
•  Error free!
•  Complete coverage!
!

GATAGAAGGGTCCGCTCGCTCAGCTACCGGTTTTTATAGATCTA	

	 	 	 	 	 	 	 																									TTTTTATAGATCTA		
	 	 	 	 	 	 	 		AGCTACCGGTTTTTAT	
	 	 	 	 	 	 						CAGCTACCGGTTTTT	
	 	 	 	 	 	 				TCAGCTACCGGTTT	
	 	 	 	 					CTCGCTCAGCTACC	
	 	 	 				CCGCTCGCTCAGC	

																		GGGTCCGCTCGCTCA	
								AGAAGGGTCCGCTC	
GATAGAAGGGTCCGCT	
	

Introduction!

GATAGAAGGGTCCGCTCGCTCAGCTACCGGTTTTTATAGATCTA	

	 	 	 	 	 	 	 																									TTTTTATAGATCTA		
	 	 	 	 	 	 	 		AGCTACCGGTTTTTAT	
	 	 	 	 	 	 						CAGCTACCGGTTTTT	
	 	 	 	 	 	 				TCAGCTACCGGTTT	
	 	 	 	 					CTCGCTCAGCTACC	
	 	 	 				CCGCTCGCTCAGC	

																		GGGTCCGATCGCTCA	
								AGAAGGGTCCGCTC	
GATAGAAGGGTCCGCT	
	

Coverage: reads “covering” a position in the genome
(average or at a single base or region)!

What is our average coverage? !
What is the coverage at the arrow?!

44	bases	in	the	“genome”		

131	bases	in	the	reads	

Introduction!

Why might there be differences among reads
covering the same position? !

GATAGAAGGGTCCGCTCGCTCAGCTACCGGTTTTTATAGATCTA	

	 	 	 	 	 	 	 																									TTTTTATAGATCTA		
	 	 	 	 	 	 	 		AGCTACCGGTTTTTAT	
	 	 	 	 	 	 						CAGCTACCGGTTTTT	
	 	 	 	 	 	 				TCAGGTACCGGTTT	
	 	 	 	 					CTCGCTCAGCTACC	
	 	 	 				CCGCTCGCTCAGC	

																		GGGTCCGATTGCTCA	
								AGAAGGGTCCGCTC	
GATAGAAGGGTCCGCT	
	

Introduction!

How would you go about “assembling” these
reads when you have no reference?!

	 	 	 	 	 	CCGCTCGCTCAGC	 	 	 	 	 	 	 	
	 						 	 	 	 	 	 	 				TCAGCTACCGGTTT	
	 	 	 	 					CTCGCTCAGCTACC	

CAGCTACCGGTTTTT	
	 	 	 				AGAAGGGTCCGCTC	

GATAGAAGGGTCCGCT	
	 	 	 	 	 	AGCTACCGGTTTTTAT
	 	 	 	 	 	 	 	 	 	 	TTTTTATAGATCTA		
	 	GGGTCCGCTCGCTCA	

	
	

Introduction!

Write a one liner to find all the overlaps exactly 4 bp in length
between CTCTAGGCC and a list of other sequences in the file
~/Topic5/data/overlaps.fa!
!
Step 1. Compare the end of the sequence (GGCC) to the start
of the other sequences!

!
Hint: grep (^ to specify start of the line)!

!
Step 2. Compare the start of the sequence (CTCT) to the end
of the other sequences!
!

Hint: grep ($ to specify the end of the line)!
!
!

Code break!

OLC programs:!
ARACHNE, PHRAP, CAP, TIGR, CELERA !

Overlap-layout-consensus!

Overlap: make an overlap graph!
!
Layout: find the path through the graph!
!
Consensus: find the most likely contig sequence!

Reads:	CTCTAGGCC	 	GCCTCAAT 	CAATTTTT	
	
	
	
	

CTCTAGGCC	 GCCTCAAT	 CAATTTTT	
3	 4	

Node	or	vertex=	
read	

Edge=overlap	(weight	
by	the	amount	of	
overlap	in	bp)	

CTCTAGGCC 		
GCCTCAAT	

GCCTCAAT	
CAATTTTT	

Can pick a minimum overlap length (e.g. 3 bp)!
!

This	is	a	graph!
(directed)	

Finding overlaps can be computationally challenging
when you have millions of reads!!

Overlap-layout-consensus!

Here we have only one path through the graph!

Reads:	CTCTAGGCC	 	GCCTCAAT 	CAATTTTT	
	
	
	
	

CTCTAGGCC	 GCCTCAAT	 CAATTTTT	
3	 4	

Node	or	vertex=	
read	

Edge=overlap	(weight	
by	the	amount	of	
overlap	in	bp)	

CTCTAGGCC 		
GCCTCAAT	

GCCTCAAT	
CAATTTTT	

CTCTAGGCC	

Overlap-layout-consensus!

These graphs get complicated!!

GCATTATATATTGCGCGTACGGCGCCGCTACA	

GCATTAT	
TATATTG	

ATTATAT	 ATATTGC	
ATTGCGC	 CGCCGCT	 GCCGCTA	

CGCGTAC	
ACGGCGC	 GCGTACG	 GTACGGC	

3	

5	 5	
4	

6	 4	
5	

6	

6	 5	
4	3	 3	

3	
3	

3	

Minimum	
overlap	=	3	
Read	length	=	7	

Original	sequence	

How can we find the best path?!

Overlap-layout-consensus!

Hamiltonian path: hit each node (read) once!
–no quick way to figure it out (NP-complete) !
–not practical and not implemented!
!

Overlap-layout-consensus!

Shortest superstring: find the shortest final
sequence (greatest overlap between reads)!
-hit each node (read) once!
-NP-hard!
!

Overlap-layout-consensus!

Greedy algorithm (example)!
!
1)  Pairwise alignments between all fragments!
2)  Pick the two with the largest overlap !
3)  Merge chosen fragments!
4)  Repeat!

Overlap-layout-consensus!

Reads:	CTCTAGGCC	 	GCCTCAAT 	CAATTTTT	
	
	
	
	CTCTAGGCC	 GCCTCAAT	 CAATTTTT	

3	 4	

CTCTAGGCC 		
GCCTCAAT	

GCCTCAAT	
CAATTTTT	

Join sequences together into one sequence!

CTCTAGGCC
		 GCCTCAAT	

CAATTTTT	
CTCTAGGCCTCAATTTTT	

Overlap-layout-consensus

!
!

•  require overlaps to be scored between all
possible pairs of reads. This is a problem
when you have millions of reads!

•  finding the best path through the graph with
a huge number of nodes (reads) is
computationally challenging !

Is there a faster way to assemble many short
reads?!

LimitaQons	of	OLC	

Overlap-layout-consensus

What are all the 5-mers (5 bp fragments) in these reads? !

De Bruijn graphs!

read	2	
GGGAACCCC	

ATGGG	
			TGGGG	
					GGGGA	
								GGGAA		
										GGAAC	
																														

read	1	
ATGGGGAAC	

								GGGAA		
										GGAAC	
													GAACC	
																AACCC	
																		ACCCC	
	

2	reads	of	9	bp		

If a read is L bp long, how many kmers of size k can you make?!

Find all the unique 9mers in a fasta sequence and sort them
alphabetically ~/Topic5/data/kmer.fa!
!
1.  Find all the kmers in this fasta sequence.!

Hints: test out the following commands!
cut -c2- kmer.fa!
cut -c1-4 kmer.fa!
!
for num in {1..10}!
do!
echo $num >> file.txt!
done!

!
2. Sort them and keep the unique ones!

Hint: try sort!
!

Code break!

•  Join up all the k-mers (length = k bp) into a graph with an
overlap of k-1 (here k=5)!

read	2	
GGGAACCCC	

ATGGG	
			TGGGG	
					GGGGA	
								GGGAA		
										GGAAC	
													GAACC	
																AACCC	
																		ACCCC	
	

ATGGG	 TGGGG	 	GGGGA	
5-1=4	 5-1=4	

ATGGG	
			TGGGG	

TGGGG	
			GGGGA	

GGGAA	
5-1=4	 5-1=4	

GGGGA	
			GGGAA		

GGAAC	

GGGAA		
			GGAAC	

5-1=4	
GAACC	 AACCC	 ACCCC	

read	1	
ATGGGGAAC	

GGAAC		
			GAACC	

GAACC		
			AACCC	

AACCC		
			ACCCC	

5-1=4	 5-1=4	

•  Traverse through the graph!
•  The first base of each node spells out the sequence!

De Bruijn graphs!

De Bruijn graphs!

Eulerian graph must be both balanced and strongly
connected!

De Bruijn graphs!

Algorithm to find a path through an !
Eulerian graph!

De Bruijn graphs!

Algorithm to find a path through an !
Eulerian graph!

De Bruijn graphs!

Algorithm to find a path through an !
Eulerian graph!

De Bruijn graphs!

Algorithm to find a path through an !
Eulerian graph!

De Bruijn graphs!

Limitations of the Eulerian path:!
!
•  With “perfect” genomic data there are usually

many Eulerian tours!

•  Data is not perfect (areas of low coverage,
errors, repeats, etc.)!

De Bruijn graphs!

Sequencing	errors	

The	number	of	
Qmes	this	4mer	
occurs	

Flicek	&	Birney	
Nature	Methods	(2009)	

3.	Build	the	graph	

2.	Find	the	kmers	

1.	Sequence	

De Bruijn graphs!

ATGGG	
			TGGGG	
					GGGGA	
								GGGAA		
										GGAAC	
													GAACC	
																AACCC	
																		ACCCC	
	

Flicek	&	Birney	Nature	Methods	(2009)	

4.	Simplify	the	graph	
	

5.	Error	correct	(Qp,	bubble	and	
erroneous	connecQon	removal)	
	

De Bruijn graphs!

ATGGG	
			TGGGG	
					GGGGA	
								GGGAA		
										GGAAC	
													GAACC	
																AACCC	
																		ACCCC	
	

Advantages:!
1)  Set node length (no overlap algorithm)!
2)  Easy approaches for traversing through the graph!
3)  Simpler representation of repeats in the graph!
!
Disadvantages:!
1)  Lose information!
2)  Shorter contigs!
!
!
For PacBio and other long read sequences, what
type of assembly strategy would you use?!

De Bruijn graphs!

Repetitive regions!

Sanders	and	Bowman	

Repetitive regions!

Sanders	and	Bowman	

•  Finishing eukaryotic genome assemblies
can be challenging because much of the
genome is repetitive!

•  This repetitive DNA breaks up the
assembly and obscures the order and
orientation of the assembled contigs!

•  Even well studied model organisms can
have poorly assembled regions of their
genome!

Finishing genomes!

Adams 2008

Finishing genomes!

Adams 2008

Finishing genomes!

1. Long read sequencing (e.g. PacBio)!
2. Optical mapping (https://vimeo.com/
116090215)!
3. Genetic and physical maps!
4. Jumping libraries!
!

Finishing genomes!

Ragweed genome project: Chicago library

Finishing genomes!

Before	HiRise	 A4er	HiRise	 Fold	Increase	

N50	
#of	Scaffolds	

30	Kb	
12,793	

522	Kb	
807	

17.5X	
-	

N90	
#of	Scaffolds	

3	Kb	
65,658	

88Kb	
3,190	

29.3X	
-	

Finishing genomes!

	
	
	

Other types of de novo assembly!
Transcriptome!
!
•  Variable coverage among genes/isoforms!
•  Alternative splicing !

promotors, exons, and poly(A)!
!

	
	
	

Grabherr	et	al	2011	

Other types of de novo assembly!

	
	
	

Other types of de novo assembly!

	
	
	

De novo assembly of GBS reads: Stacks!
!

Other types of de novo assembly!

hbp://catchenlab.life.illinois.edu/stacks/param_tut.php	

Further Reading!!
!
Flicek, P., & Birney, E. (2009). Sense from sequence reads: methods for alignment
and assembly. Nature methods, 6, S6-S12.!
!
Zerbino DR, Birney E. Velvet: Algorithms for de novo short read assembly using de
Bruijn graphs. Genome Research. 2008;18(5):821-829. doi:10.1101/gr.074492.107.!
!
http://computing.bio.cam.ac.uk/local/doc/velvet.pdf!
!
Li, Z., Chen, Y., Mu, D., Yuan, J., Shi, Y., Zhang, H., ... & Yang, B. (2012).
Comparison of the two major classes of assembly algorithms: overlap–layout–
consensus and de-bruijn-graph. Briefings in functional genomics, 11(1), 25-37.!
!
Grabherr MG, Haas BJ, Yassour M, et al. Trinity: reconstructing a full-length
transcriptome without a genome from RNA-Seq data. Nature biotechnology.
2011;29(7):644-652. doi:10.1038/nbt.1883.!
!
https://github.com/trinityrnaseq/trinityrnaseq/wiki!
!
J. Catchen, A. Amores, P. Hohenlohe, W. Cresko, and J. Postlethwait. Stacks:
building and genotyping loci de novo from short-read sequences. G3: Genes,
Genomes, Genetics, 1:171-182, 2011. !
!
http://catchenlab.life.illinois.edu/stacks/!

!

Today you will use the genome assembly program Velvet to
assemble a bacterial genome. !
!
Velvet overview:!
1. Hash k-mers!
2. Construct the graph!
3. Correct for errors!
4. Resolve the repeats!
!
Refer to Github page or open ~/Topic5/README_assembly.txt
and follow the instructions!

!
!

Tutorial!

1) Given the above information, what is the expected
coverage?!
!
2) For a k-mer of 21 what is would the k-mer coverage be for
this genome assembly?!

!
3) Can you think of other ways to assess assembly quality?
What might be the trouble with only focusing on maximizing
N50? Discuss this with your group. !
!
4) Quantify the assembly metrics for your first assembly that
you ran without any options. In your group of four, each person
should pick different sets of parameters to run. Compare the
resulting assemblies with one another and discuss which ones
seemed to have improved the assembly and why that might
be. Be prepared to share your findings with the class. !

Tutorial!

•  Make sure R and Rstudio are installed and working on your
computer!

•  Go over Greg’s short R tutorial (Topic 2) if you are not
familiar with R!

For next class!

