UBC Bioinformatics Class

Topic 5: de novo assembly



o |dentify the difference between de novo
assembly and reference guided alignment

» Evaluate two different approaches to de
NoVo genome assembly

* Describe how repetitive elements can
hamper proper assembly and compare
approaches that can overcome this
problem

» Describe approaches for transcriptome/
GBS de novo assembly
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Multiple identical
copies of a genome

Shatter the genome

into reads ’ ) \///\~/ p B §| -

Sequence the reads AGAATATCA| |TGAGAATAT| |GAGAATATC

AGAATATCA
Assemble t!\e GAGAATATC
genome using
overlapping reads TGAGAATAT

. . « TGAGAATATCA. ..



Alignment vs assembly

Aligning to a reference:
« Reference guided alignments: align the reads to a
reference genome and looks for differences

Building a reference:

* De novo assembly: no previous genome assembly is
used

« Comparative genome assembly: assemble a newly
sequenced genome by mapping it on to a reference

« Hybrid approach: reference-guided and de novo for
unused reads or de novo and then reference guided
alignments
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Original sequence

GATAGAAGGGTCCGCTCGCTCAGCTACCGGTTTTTATAGATCTA

GATAGAAGGGTCCGCT
AGAAGGGTCCGCTC

GGGTCCGCTCGCTCA fragmented sequences
CCGCTCGCTCAGC from sequencer
CTCGCTCAGCTACC (reads)
TCAGCTACCGGTTT

CTACCGGTTTTT

AGCTACCGGTTTTTAT

TTTTTATAGATCTA



cembled TTTTTATAGATCTA
AGCTACCGGTTTTTAT
fragmented sequences CAGCTACCGGTTTTIT
Kzzj:)equencef TCAGCTACCGGTTT
CTCGCTCAGCTACC
CCGCTCGCTCAGC
GGGTCCGCTCGCTCA
AGAAGGGTCCGCTC
GATAGAAGGGTCCGCT

GATAGAAGGGTCCGCTCGCTCAGCTACCGGTTTTTATAGATCTA

We want to reconstruct this from the reads



Simplified scenario

« Single strand
 FError free

o COmplete coverage TTTTTATAGATCTA
AGCTACCGGTTTTTAT

CAGCTACCGGTTTTT
TCAGCTACCGGTTT
CTCGCTCAGCTACC
CCGCTCGCTCAGC
GGGTCCGCTCGCTCA
AGAAGGGTCCGCTC
GATAGAAGGGTCCGCT

GATAGAAGGGTCCGCTCGCTCAGCTACCGGTTTTTATAGATCTA



Coverage: reads “covering” a position in the genome

(average or at a single base or region)

TTTTTATAGATCTA
AGCTACCGGTTTTTAT
CAGCTACCGGTTTTT
TCAGCTACCGGTTT
CTCGCTCAGCTACC
CCGCTCGCTCAGC 131 bases in the reads
GGGTCCGATCGCTCA
AGAAGGGTCCGCTC

GATAGAAGGGTCCGCT x o )
44 bases in the “genome

GATAGAAGGGTCCGCTCGCTCAGCTACCGGTTTTTATAGATCTA
What is our average coverage”
What is the coverage at the arrow?



TTTTTATAGATCTA
AGCTACCGGTTTTTAT
CAGCTACCGGTTTTT
TCAGGTACCGGTTT
CTCGCTCAGCTACC
CCGCTCGCTCAGC
GGGTCCGATTGCTCA
AGAAGGGTCCGCTC
GATAGAAGGGTCCGCT

GATAGAAGGGTCCGCTCGCTCAGCTACCGGTTTTTATAGATCTA

Why might there be differences among reads
covering the same position”



CCGCTCGCTCAGC
TCAGCTACCGGTTT
CTCGCTCAGCTACC
CAGCTACCGGTTTTT
AGAAGGGTCCGCTC
GATAGAAGGGTCCGCT
AGCTACCGGTTTTTAT
TTTTTATAGATCTA
GGGTCCGCTCGCTCA

How would you go about "assembling” these
reads when you have no reference?



Write a one liner to find all the overlaps exactly 4 bp in length
between CTCTAGGCC and a list of other sequences in the file
~[Topich/data/overlaps.fa



Overlap: make an overlap graph
Layout: find the path through the graph

Consensus: find the most likely contig sequence

OLC programs:
ARACHNE, PHRAP, CAP, TIGR, CELERA



Reads: CTCTAGGCC GCCTCAAT  CAATTTTT

This is a graph! CTCTAGGCC GCCTCAAT

(directed) GCCTCAAT CAATTTTT
CTCTAGGCC | GCCTCAAT |  CAATTTTT
3 f 4
Node or vertex= Edge=overlap (weight
read by the amount of

overlap in bp)

Can pick a minimum overlap length (e.g. 3 bp)

Finding overlaps can be computationally challenging
when you have millions of reads!



Reads: CTCTAGGCC GCCTCAAT  CAATTTTT

CTCTAGGCC GCCTCAAT
GCCTCAAT CAATTTTT
CTCTAGGCC D)l GCCTCAAT | ) CAATTTTT
3 T 4
Node or vertex= Edge=overlap (weight
read by the amount of

overlap in bp)

Here we have only one path through the graph



These graphs get complicated!

<€

ACGGCGC 3 GCGTACG —&GTACGGC
a §§:‘CGCGTAC -—Z 4
GCATTAT \ y B ATTGCGC
- —— , ceceoet ~B GecaeTa
Minimum
overlap =3

Read length =7

GCATTATATATTGCGCGTACGGCGCCGCTACA

Original sequence

How can we find the best path?



Hamiltonian path: hit each node (read) once
—Nno quick way to figure it out (NP-complete)
—not practical and not implemented




Shortest superstring: find the shortest final
sequence (greatest overlap between reads)
-hit each node (read) once

-NP-hard



Greedy algorithm (example)

1) Pairwise alignments between all fragments
2) Pick the two with the largest overlap
3) Merge chosen fragments

4) Repeat

—_———

{he greedy one



Join sequences together into one sequence

Reads: CTCTAGGCC GCCTCAAT  CAATTTTT

CTCTAGGCC GCCTCAAT
GCCTCAAT CAATTTTT

CTCTAGGCC | GCCTCAAT | CAATTTTT
3 4

CTCEAGIEL4
)

CT(




Limitations of OLC

* require overlaps to be scored between all
possible pairs of reads. This is a problem
when you have millions of reads

 finding the best path through the graph with
a huge number of nodes (reads) is
computationally challenging

|s there a faster way to assemble many short
reads?



What are all the 5-mers (5 bp fragments) in these reads?

read 1 read 2
2 reads of 9 bp ATGGGGAAC GGGAACCCC
ATGGG GGGAA
TGGGG GGAAC
GGGGA GAACC
GGGAA AACCC
GGAAC ACCCC

If aread is L bp long, how many kmers of size k can you make?



Find all the unigue 9mers in a fasta sequence and sort them
alphabetically ~/Topich/data/kmer.fa

1. Find all the kmers in this fasta sequence.
Hints: test out the following commands
cut -c2- kmer.fa
cut -c1-4 kmer.fa

for num in {1..10}

do

echo $num >> file.txt
done

2. Sort them and keep the unigue ones
Hint: try sort



« Join up all the k-mers (length = k bp) into a graph with an
overlap of k-1 (here k=5)

read 1 read 2
ATGGGGAAC GGGAACCCC

ATGGG
TGGGG
GGGGA
GGGAA
GGAAC
GAACC
AACCC
ACCCC

ATGGG TGGGG GGGGA GGGAA GGAAC GAACC AACCC
TGGGG GGGGA GGGAA GGAAC GAACC AACCC ACCCC

ATGGG ) TGGGG ) GGGGAI ) GGGAA " ) GGAACEE ) GAACCL  JAACCCL_ »Acccc

5-1=4 5-1=4— 5:1=4 5-1=45-1=4 5-1=4 5-1=4

« Traverse through the graph
* The first base of each node spells out the sequence
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Eulerian graph must be both balanced and strongly
connected

O/'/O ./'O
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Algorithm to find a path through an
Eulerian graph



Algorithm to find a path through an
Eulerian graph
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Algorithm to find a path through an
Eulerian graph
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Algorithm to find a path through an
Eulerian graph



Limitations of the Eulerian path:

« With “perfect” genomic data there are usually
many Eulerian tours

« Data is not perfect (areas of low coverage,
errors, repeats, etc.)



| TAGTCGAGGCTTTAGATCCGATGAGGCTTTAGAGACAG |

1. Sequence

AGTCGAG  CTTTAGA CGATGAG CTTTAGA
GTCGGG TTAGATC ATGAGGC  GAGACAG
GAGGCTC ATCCGAT  AGGCTTT GAGACAG
AGTCGAG TAGATCC  ATGAGGC TAGAGAA & P
ol et i IO Sequencing errors
CGAGGCT AGATCCG TGAGGCT  AGAGACA
TAGTCGA GCTTTAG TCOGATG GCTCTAG
TCGACGC GATCCGA GAGGCTT AGAGACA
TAGTCGA  TTAGATC GATGAGG TTTAGAG
GTCGAGG  TCTAGAT ATGAGGC TAGAGAC
AGGCTTT ATCCGAT AGGCTTT  GAGACAG
AGTCGAG TTAGATT ATGAGGC AGAGACA
GGCTTTA TCCGATG TTTAGAG 1
S5 L 2. Find the kmers
AGTCGAG TITAGATC  ATGAGGC TTAGAGA
GAGGCTT GATCCGA  GAGGCTT GAGACAG

Linear stretches
: ‘% he number of
3. Build the graph (1)

o8 times this 4mer
TGAG ATGA GATG CGAT CCGA TCCG ATCC GATC AGAT
@ @) G ©) ) ) 9 @) @By OCCYIS

@ - 0=« 0= . 0e—9e—0e—0e 0w -
-0 — +0 —+0 0 M
(19

RS R Sy ¢ R - 30 SIX. O < e\ ,QCTC CTCT TCTA CTAG

X0 B Bt R e LR
TAGT AGTC GTCG TOCGA CGAG GAGG AGGC GGCT GGCT | TAGA AGAG GAGA AGAC GACA ACAG
B @9 99 (109 (&) (189 (183 (189 (11 T O =e v v gy ) (129 9 @)

. . gl ool GCTT CTTIT TTTA TTAG - -
Flicek & Birney S @ @) @) (29

CGAC
Nature Methods (2009) M (19 09 a
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4. Simplify the graph

TAGTCGA CGAG
<> e -
-

5. Error correct (tip, bubble and
erroneous connection removal)

Bubble

AGATCCGATGAG
L
[ Yp— - -e
TAGTCGAG GAGGCTTTAGA AGAGACAG

Flicek & Birney Nature Methods (2009)



Advantages:

1) Set node length (no overlap algorithm)

2) Easy approaches for traversing through the graph
3) Simpler representation of repeats in the graph

Disadvantages:
1) Lose information
2) Shorter contigs

For PacBio and other long read sequences, what
type of assembly strategy would you use”?



Sequences:

Unique Repeat Unique Repeat  Unique Repeat

S — i A S | E———

Sanders and Bowman

€) Fragment DNA and
shotgun sequence.

[

l O Identify overlapping sequences

and assemble into contigs.

A

Repeat B Repeat
1 C 2
Since these sequences are identical, they cannot be assigned
to a unique genomic location; thus, the relative locations and
orientations of the A, B, and C contigs cannot be determined.

Some possible assemblies:

A B C
N E—pedeeegegeey 00 0 Eedeseegegegeges 0 B
p) B A

= e e e s .

A 8 C
S e e e = e =
B C A
. e = -

8 C A
===  ======_ =

Figure 18.2 The problem of repetitive DNA.



Sanders and Bowman

[ 80 kb ,

Sequences:
Unique Repeat Unique Repeat Unique
— e ]
) Construct three libraries

€) Generate paired-end of different sizes.
sequence reads.

m-;oubx'L ; - -

g = _—
o ——
8kb | L '
TEs s ms =s i
=S lecscEd
[ i =
23k _ | | !
BB &4 ESSSREESSSRIES
uugu'a‘!;_xu -
SEE=ErISE-ifzcza
EsisEsici-c-ecais
=== =ci.=_ =
BERSESESESESTIRERSE
Contig 1 Eontigz | Contig 3

Contigs can be ordered and oriented using paired-end reads of
longer clones X and Y; thus, the three contigs form a single scaffold

b — - - bt ——— — — ashe——
Insert size  Fold coverage
2-3 8x
6-8 2x
20-30 05x

Figure 18.3 Palred-end shotgun sequencing strategy.



* Finishing eukaryotic genome assemblies
can be challenging because much of the
genome IS repetitive

* This repetitive DNA breaks up the
assembly and obscures the order and
orientation of the assembled contigs

* Even well studied model organisms can
have poorly assembled regions of their
genome
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Sequence — =
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Sequence
contigs B — S— S—
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1. Long read sequencing (e.g. PacBio)
2. Optical mapping (https://vimeo.com/
116090215)

3. Genetic and physical maps

4. Jumping libraries



Ragweed genome project: Chicago library
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_ Before HiRise | After HiRise Fold Increase

N50 30 Kb 522 Kb 17.5X
#of Scaffolds 12,793 807 -
N90 3 Kb 88Kb 29.3X

#of Scaffolds 65,658 3,190 -



Other types of de novo assembly
Transcriptome
« Variable coverage among genes/isoforms

» Alternative splicing
promotors, exons, and poly(A)



Grabherr et al 2011
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Other types of de novo assembly
De novo assembly of GBS reads: Stacks

Stack 1

Stack 2

Oo/eo

—— — — Stack 3

N S

[ AYVNOILDI] ]

Stack 1 Stack 2 Stack 3 Stack X
Locus 1 Locus 2 @ Locus X

http://catchenlab.life.illinois.edu/stacks/param_tut.php
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Zerbino DR, Birney E. Velvet: Algorithms for de novo short read assembly using de
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Grabherr MG, Haas BJ, Yassour M, et al. Trinity: reconstructing a full-length

transcriptome without a genome from RNA-Seq data. Nature biotechnology.
2011;29(7):644-652. doi:10.1038/nbt.1883.
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J. Catchen, A. Amores, P. Hohenlohe, W. Cresko, and J. Postlethwait. Stacks:
building and genotyping loci de novo from short-read sequences. G3: Genes,
Genomes, Genetics, 1:171-182, 2011.

http://catchenlab.life.illinois.edu/stacks/



Today you will use the genome assembly program Velvet to
assemble a bacterial genome.

Velvet overview:

1. Hash k-mers

2. Construct the graph
3. Correct for errors

4. Resolve the repeats

Refer to Github page or open ~/Topic5/README_assembly.txt
and follow the instructions



1) Given the above information, what is the expected
coverage”?

2) For a k-mer of 21 what is would the k-mer coverage be for
this genome assembly?

3) Can you think of other ways to assess assembly quality?
What might be the trouble with only focusing on maximizing
N507 Discuss this with your group.

4) Quantify the assembly metrics for your first assembly that
you ran without any options. In your group of four, each person
should pick different sets of parameters to run. Compare the
resulting assemblies with one another and discuss which ones
seemed to have improved the assembly and why that might
be. Be prepared to share your findings with the class.



« Make sure R and Rstudio are installed and working on your
computer

« Go over Greg’s short R tutorial (Topic 2) if you are not
familiar with R



. ABySS (Assembly By Short Sequencing) (Birol et al): A denovo assembler for short read sequence data which uses a distributed representation of a de Bruijn graph,
allowing parallel computation of the assembly algorithm across a network of commodity computers. Developed at Canada's Michael Smith Genome Sciences Centre.

. ALLPATHS-LG (Gnerre et al): a de Bruijn graph-based de novo assembler for large (and small) genomes. ALLPATHS-LG is being developed by scientists at the Broad
Institute.

. Bambus2: The second generation Bambus scaffolder relies on a combination of a novel method for detecting genomic repeats and algorithms that analyze assembly
graphs to identify biologically meaningful genomic variants. Bambus2 compares favorably to existing scaffolds generated by CABOG, Newbler and SOAPdenovo with
respect to contiguity and error rate. While Bambus 2 was specifically designed for polymorphic and metagenomic scaffolding, its modular and efficient algorithm allows
it to be used to scaffold mammalian genomes and used a drop-in replacement scaffolder for CABOG, Newbler, and SOAPdenovo. Bambus?2 is being primarily developed
by Sergey Koren and Mihai Pop, with input from Todd Treangen,

. Celera Assembler: an Overlap-Layout-Consenus based de novo whole-genome shotgun (WGS) DNA sequence assembler. It reconstructs long sequences of genomic DNA
from fragmentary data produced by whole-genome shotgun sequencing. Celera Assembler has enabled many advances in genomics, including the first whole genome
shotgun sequence of a multi-cellular organism (Myers 2000) and the first diploid sequence of an individual human (Levy 2007). Celera Assembler was developed at
Celera Genomics starting in 1999. It was released to SourceForge in 2004 as the wgs-assembler under the GNU General Public License. The pipeline revised for 454 data
was named CABOG (Miller 2008).

. MSR-CA (pronounced "MizerKa") is a new technique that pre-processes the short read data and then performs the final assembly using a modified version of Celera
Assembler. MSR-CA stands for Maryland Super-Reads + Celera Assembler. The pre-processing steps include error correction and subsequent coverage reduction by
creating "super-reads,"” which are produced using a de Bruijn graph. The algorithm then groups together the reads that map to the same sets of nodes and edges, and
for each set replaces them by a single super-read that contains these nodes and edges. This can reduce the number of reads by a factor of 50 or more, resulting in the
data set that is much easier to manage.

. SGA (Simpson et al): stands for String Graph Assembler. Experimental de novo assembler based on string graphs. SGA is being developed by scientists at the Wellcome
Trust Sanger Institute.

. SOAPdenovo (Li et al): is the short-read assembler that was used for the panda genome, the first mammalian genome assembled entirely from lllumina reads, and for
several human genomes and other genomes subsequently. It is being developed by scientists at BGI.

. Velvet (Zerbino et al): Velvet is a de novo genome assembler specially designed for short read sequencing technologies, particularly lllumina reads, and was one of the
first short-read assemblers to be published. It was developed by Daniel Zerbino and Ewan Birney at the European Bioinformatics Institute (EMBL-EBI), near Cambridge,
England.



Assembler Contigs Scaffolds

Num N50 Errors | N50 | Num N50 Errors N50
(kb) COIT. (kb) COIT.
(kb) (kb)
ABySS 302 29.2 19 24.8 246 34 1 28
Allpaths-LG 60 96.7 20 66.2 12| 1,092 0 1,092
Bambus2 109 50.2 [ 190 16.7 17| 1,084 0 1,084

CABOG Could not run: incompatible read lengths in one library
MSR-CA 94 59.2 34 48.2 17| 2,412 3 1,022
SGA 1252 4.0 10 4.0 456 208 1 208
SOAPdenovo 107 | 288.2 65 62.7 99 332 0 288
Velvet 162 48.4 42 41.5 45 762 17 126




