Topic 2: Programming
for biologists

Included In this topic

- Why command line

- Thinking ahead: Reproducibility

. Shell basics

- Common gotchas for newcomers

- Common languages

Non-command line options

. Galaxy (https://www.galaxyproject.org/)

- Open-source, run much of the same tools

geneiou R: No background in
' bioinformatics required

\ Would you prefer to own both the experimental design and the data analysis? We're
° ‘ O m m e rC | a | bringing sophisticated bicinformatics to the fingertips of the life scientists, making sure
that critical information isn't lost.

> Find out how

. CLCbio Genomics Workbench

- Commercial, includes assembly :[l[b: o

Galaxy

- Run pre-established tools, setup is form-based

. Jobs submitted to a cluster of servers (running the

-~

software stack)

0 ® < 7 @ Cu usegalaxy.org & i] +
Analyze Data Workflow Shared Data~ Lab~ Visualization~ Admin Using 1.6 TB
= Tools Workflow Canvas | g101 3 Details
: Cut on data @ x
. # Cut columns from a table -
5 regions 'E ¢ Data (gl o (Galaxy Version 1.0.2)
format: bed, database: hg38 wetan From
Send Data - Label
0 c m 2 ‘) ’ R—trer out_filel (tabular)
Collection Operations Add a step label.
display in IGB View Text Manipulation / Select first x Annotation
display with IGV local Datamash from
display at UCSC main —_— out_filel

Filter and Sort

1.Chrom Z2.5tart 3.End 4 _Name Join, Subtract and Group

chrzz 15528158 15529139 uc@llagc Fetch Aligaments /Sequences | |
NGS: OC and manipulation Add an annotation or notes to this
chrzz 15690077 15690709 uc@l0gar

step. Annotations are available when
NGS: DeepTools o
a workflow is viewed.

A

chrzz 15690245 15690709 uc@6Zbek NGS: Mapping x @ Cut columns
NGS: RNA Analysis
chrzz 22376182 22376505 uc@62cbs NGS. SAMtoole) L2, A B
chri 46256500 462633272 uc@@3bht NGS: BamTools | . @ Delimited by
NGS: Picard
NGS: VCF Manipulation Tap T
NGS: Peak Calling From
NGS: Variant Analysis / Join two Datasets X Data input "input’ (txt)

< . >

Loiey

Why use command line?

Extract subsets of a large file (line range, column)

. Steps recorded, repeatable, auditable

Powerful text editing tools. Powerful code revision tools
- Generally faster than GUI based methods

Most scientific programs do not have a GUI (necessity)
- Allows different programs to be combined arbitrarily

Free

Command line actions

Download/Install package(s)
Download / convert dataset(s)
Configure parameters

Run tools

Analyze data (validation, plotting, etc.)

Publish!

Command line actions

Download/Install package(s)
Download / convert dataset(s)
WOOPS Configure parameters
Run tools
Analyze data (validation, plotting, etc.)

Publish!

AXIs of reproducibility

Running everything Professional
— : !
by hand pipeline

AXIs of reproducibility

Running everything Professional
C—————- St
by hand I pipeline
Documented
shell scripts

AXIs of reproducibility

+ clearly identified
program deps.

Running everything Professional
by hand pipeline

Documented
shell scripts

AXIs of reproducibility

+ clearly identified

program deps.

Running everything l Professional
C——————ly

Documented + |abels
shell scripts for all inputs

by hand pipeline

- ' o'

.q
" .,&.’_75 B
E‘.’ "'""\ r'-'1§§-.- ﬂ'ﬁ-‘ﬂ"ﬂéﬁl

mm%ﬁy

2 !'_
L.F—'-—--—«— J 7-;» - aT-aT ' G
\m","_i‘T\""-n m a. x.ra-=I—- Ir o= mfr':vn £ Vg
.p. ot e S e S g i@f—#{":’ » P s el el _.'F o
\\—‘ A Tl e Mo Him _cl'-.l"w o /
5,..._._ - Attt s g
\:.\z-a'—;-‘—_-\ : m ._'::-.__{L e .

o,

e
w ¥ \-‘—w"'— - va.
:»-_W“-—
- T

% 2\-‘\-%.«.

Interface: prompt

]slegare@meteoric:~/src$ my _program argl arg2 arg3 arg4 ...

\ J | J |) |
| | |
Prompt executable arguments
($PS1)
\ }
|
command terminal

cursor

Intertface: stdio, exit codes

STDOUT: 1

STDIN: 0 — Running Program (reSU|tS)
(inputs) STDERR: 2

(messages)

- On start, programs inherit 3 open files (They can open more)
- On exit, they provide an integer exit code for the parent

. convention: 0 is success, non-0 is failure (i.e. 1 to 255)

Interface: signals

S kill -KILL 100 == bl b

Signals are one-way messages sent to control running programs
SIGINT (interrupt) (CTRL-C on terminal)
SIGSTOP (pause) / SIGCONT (CTRL-Z on terminal / fg)

SIGKILL (kill the process immediately) (use kill -9 PID")

Interface: grammar
(GNU syntax)

- Programs take options and parameters. Example:

m --one-file-system --interactive=always A.txt B.gz

rm: the executable/program. always first. the other arguments are specific to that program.

. short options. single "-'. relative order is generally unimportant. collapsible, e.g
--one-file-system: long options. double "-'. some short and long forms are equivalent.

=always: some options take a param value. =" introduces the value applied to the preceding
long option. Short options can take a parameter, but without "=", e.g.: "tar -cf F.gz mydir’

A.txt B.gz: Positional parameters. Variable number of them can be provided. Order matters.

which mycmd

specify exactly which program to run by providing a file path
>$ /path/to/mycmd -i

specify just the name - use lookup procedure to find it
>$ mycmd -i

1. reserved names (builtins): cd, for, do, Kill, help, etc.

2. aliases (user-defined shell macros) —
If all else falls:
| throws
3. shell functions “command not found”

4. file “mycmd” under each dir found in variable $PATH

/a/b/../c ./d/e/t

- Most files that you will analyze have a name (path) in
a hierarchy of files (the filesystem). Root = “/*

- “Everything is a file”: Some files don’t have a name in
the hierarchy. Network sockets, and pipes for IPC are
examples of files. (more on this later)

. Paths starting with “/" are absolute. Else, relative.

- On unix filesystems, names can contain any
character except /" and \O’ (nll) *some names are reserved: “.”, “..”

bin dev etc hame lib mnt proc root sbin tmp usr

7T\

cp ksh Is pwd passwd bin

mthomas st

RN

bin class_stuff .profile

/\

foo bar
[http://homepages.uc.edu/~thomam/Intro_Unix_Text/File System.html]

Access control follows inheritance:
* |s /home/mthomas/bin (requires +x from / to leaf)
* |s /home/mthomas/bin (requires +r on the leaf)

http://homepages.uc.edu/~thomam/Intro_Unix_Text/File_System.html

Executable files

Not every file can be run as a standalone program. Files
need to be marked as “executable”

$./mycmd
bash: ./mycmd: Permission denied
$ chmod +x mycmd # mark as executable

To open a directory, it must be marked executable.

Programming Languages

» C++ (.cpp)
. Shell scripting (.sh)
. Perl (.pl)

. Python (.py)
- R (.r)

Text Programs

myprog

t1/usr/bin/perl

$age = 25; # An integer assignment
$name = "John Paul"; # A string

$salary = 1445.50; # A floating point

print "Age = $age\n";
print "Name = $name\n";

print "Salary = $salary\n";

- The #! shebang specifies the interpreter program

“./myprog” = “/usr/bin/perl ./myprog”

C++

- Compiles into very fast binaries.
- Few prepackaged tools
- More control over use of computer resources.

. Requires programmers to be explicit about
everything. Longer development time.

- Harder to tweak and debug (due to the binary nature)

. Can be a good option for a low-level plugin/library

Shell scripting

. Basically, taking command line arguments and

putting them in a reusable script

- Easy to write.

- Provides glue between programs written in different

languages.

. Connects with external programs (sed, grep, awk)

naturally

- Needs external programs to manipulate data.

Per|

- EXxcels at text processing.

. Some prepackaged functions.
. Lacks complicated data structures.

. Very concise (at times, at the expense of readabillity)

. Slower than C++, but still fast.

Python

. Slightly slower than Perl.

. Batteries included. Scientific methods and plotting.

- Popular.

. Allows rapid prototyping.

. (ood for reformatting data. Good data structures.

R

- Many packages for specific scientific tasks and
statistics.

. (Great at plotting.

- Harder to use with big data (GB+ files), although work
arounds exist.

- Slowest option.

Recommenadations

. Genomic dabbler

. Shell and R

. (Genomic scientist

- Shell, R and Python/Perl

. Bloinformatician

- Shell, R, Python/Perl and C++

Th € Computer Language

Benchmarks Game

“Which programming language 1s fastest?”

Should we care? How could we know?

“It's important to be realistic: most people don't care
about program performance most of the time.”

"By instrumenting the ... runtime, we measure the
JavaScript behavior of ... web applications... Our
results show that real web applications behave very
differently from the benchmarks...”

https://benchmarksgame-team.pages.debian.net/benchmarksgame/

- Numerous repetitive tasks demand speed

. Software development demands time

Recommenadations

General order:

1. Make it work

2. Make it go fast

3. Make it pretty

Language choice considerations:
Meld with existing codebase

- Your current and future colleagues (expertise)

Tools we will learn:

. Unix shell

- byobu

. grep and sed

Coding Example!

Compute Canada servers

. Uses a Slurm scheduling system

- Tasks must be submitted in specific bash scripts and
will run when they get priority

. You must specify how much CPUs, RAM and time
you need.

.+ You can use ‘salloc’ to get an interactive job, which is
Ike working on your server.

