
Topic 2: Programming

for biologists

Included in this topic

• Why command line

• Thinking ahead: Reproducibility

• Shell basics

• Common gotchas for newcomers

• Common languages

Non-command line options

• Galaxy (https://www.galaxyproject.org/)

• Open-source, run much of the same tools

• Geneious

• Commercial

• CLCbio Genomics Workbench

• Commercial, includes assembly

Galaxy
• Run pre-established tools, setup is form-based

• Jobs submitted to a cluster of servers (running the

software stack)

Why use command line?
• Extract subsets of a large file (line range, column)

• Steps recorded, repeatable, auditable

• Powerful text editing tools. Powerful code revision tools

• Generally faster than GUI based methods

• Most scientific programs do not have a GUI (necessity)

• Allows different programs to be combined arbitrarily

• Free

Command line actions

1. Download/Install package(s)

2. Download / convert dataset(s)

3. Configure parameters

4. Run tools

5. Analyze data (validation, plotting, etc.)

6. Publish!

Command line actions

1. Download/Install package(s)

2. Download / convert dataset(s)

3. Configure parameters

4. Run tools

5. Analyze data (validation, plotting, etc.)

6. Publish!

woops

Axis of reproducibility

Running everything

by hand

Professional

pipeline

Axis of reproducibility

Running everything

by hand

Professional

pipeline

Documented

shell scripts

Axis of reproducibility

Running everything

by hand

Professional

pipeline

Documented

shell scripts

+ clearly identified

program deps.

Axis of reproducibility

Running everything

by hand

Professional

pipeline

Documented

shell scripts

+ clearly identified

program deps.

+ labels

for all inputs

The SHELL

Interface: prompt

executable argumentsPrompt

($PS1)

command terminal

cursor

Interface: stdio, exit codes

Running Program
STDIN: 0

(inputs)

STDOUT: 1

(results)

STDERR: 2

(messages)

• On start, programs inherit 3 open files (They can open more)

• On exit, they provide an integer exit code for the parent

• convention: 0 is success, non-0 is failure (i.e. 1 to 255)

Interface: signals

• Signals are one-way messages sent to control running programs

• SIGINT (interrupt) (CTRL-C on terminal)

• SIGSTOP (pause) / SIGCONT (CTRL-Z on terminal / fg)

• SIGKILL (kill the process immediately) (use `kill -9 PID`)

Running bwa

pid=100$ kill -KILL 100

Interface: grammar

(GNU syntax)
• Programs take options and parameters. Example:

• rm: the executable/program. always first. the other arguments are specific to that program.

• -i -f: short options. single `-`. relative order is generally unimportant. collapsible, e.g -if

• --one-file-system: long options. double `-`. some short and long forms are equivalent.

• =always: some options take a param value. `=` introduces the value applied to the preceding
long option. Short options can take a parameter, but without `=`, e.g.: `tar -cf F.gz mydir`

• A.txt B.gz: Positional parameters. Variable number of them can be provided. Order matters.

rm -i -f --one-file-system --interactive=always A.txt B.gz

which mycmd
specify exactly which program to run by providing a file path
>$ /path/to/mycmd -i

specify just the name - use lookup procedure to find it
>$ mycmd -i

1. reserved names (builtins): cd, for, do, kill, help, etc.

2. aliases (user-defined shell macros)

3. shell functions

4. file “mycmd” under each dir found in variable $PATH

If all else fails:

throws

“command not found”

/a/b/../c ./d/e/f

• Most files that you will analyze have a name (path) in

a hierarchy of files (the filesystem). Root = “/”

• “Everything is a file”: Some files don’t have a name in

the hierarchy. Network sockets, and pipes for IPC are

examples of files. (more on this later)

• Paths starting with “/” are absolute. Else, relative.

• On unix filesystems, names can contain any

character except ‘/’ and ‘\0’ (nil). *some names are reserved: “.”, “..”

[http://homepages.uc.edu/~thomam/Intro_Unix_Text/File_System.html]

Access control follows inheritance:

• ls /home/mthomas/bin (requires +x from / to leaf)

• ls /home/mthomas/bin (requires +r on the leaf)

http://homepages.uc.edu/~thomam/Intro_Unix_Text/File_System.html

Executable files

Not every file can be run as a standalone program. Files

need to be marked as “executable”

$./mycmd

bash: ./mycmd: Permission denied

$ chmod +x mycmd # mark as executable

To open a directory, it must be marked executable.

Programming Languages

• C++ (.cpp)

• Shell scripting (.sh)

• Perl (.pl)

• Python (.py)

• R (.r)

Text Programs

• The #! shebang specifies the interpreter program

• “./myprog” ≈ “/usr/bin/perl ./myprog”

#!/usr/bin/perl

$age = 25; # An integer assignment

$name = "John Paul"; # A string

$salary = 1445.50; # A floating point

print "Age = $age\n";

print "Name = $name\n";

print "Salary = $salary\n";

myprog

C++
• Compiles into very fast binaries.

• Few prepackaged tools

• More control over use of computer resources.

• Requires programmers to be explicit about
everything. Longer development time.

• Harder to tweak and debug (due to the binary nature)

• Can be a good option for a low-level plugin/library

Shell scripting
• Basically, taking command line arguments and

putting them in a reusable script

• Easy to write.

• Provides glue between programs written in different
languages.

• Connects with external programs (sed, grep, awk)
naturally

• Needs external programs to manipulate data.

Perl

• Excels at text processing.

• Some prepackaged functions.

• Lacks complicated data structures.

• Very concise (at times, at the expense of readability)

• Slower than C++, but still fast.

Python

• Slightly slower than Perl.

• Batteries included. Scientific methods and plotting.

• Popular.

• Allows rapid prototyping.

• Good for reformatting data. Good data structures.

R

• Many packages for specific scientific tasks and

statistics.

• Great at plotting.

• Harder to use with big data (GB+ files), although work

arounds exist.

• Slowest option.

Recommendations

• Genomic dabbler

• Shell and R

• Genomic scientist

• Shell, R and Python/Perl

• Bioinformatician

• Shell, R, Python/Perl and C++

• Numerous repetitive tasks demand speed

• Software development demands time

https://benchmarksgame-team.pages.debian.net/benchmarksgame/

Recommendations
General order:

1. Make it work

2. Make it go fast

3. Make it pretty

Language choice considerations:

• Meld with existing codebase

• Your current and future colleagues (expertise)

Tools we will learn:

• Unix shell

• byobu

• grep and sed

Coding Example!

Compute Canada servers

• Uses a Slurm scheduling system

• Tasks must be submitted in specific bash scripts and

will run when they get priority

• You must specify how much CPUs, RAM and time

you need.

• You can use ‘salloc’ to get an interactive job, which is

like working on your server.

