Topic 10: Phylogenomics with SNPs

Biol 525D - Bioinformatics for Evolutionary Biology 2018

Overview

- What is phylogenetic
- Terms and outline
- Methods of trees
 - UPGMA
 - Neighbour joining
 - Maximum parsimony
 - Maximum likelihood
- Distance calculations
- Considerations for SNPs
- Reticulate networks

Learning Goals

- What are the different methods of building a phylogenetic tree?
- What are the different methods of calculating phylogenetic distance?
- How can confidence be measured in phylogenetic trees?
- How can you use SNPs for phylogenetic analysis?

Phylogenetics

- Reconstructs evolutionary ties between organisms.
- Estimates divergence times between organisms.
- Can use morphological or genetic data.

Operational Taxonomic Unit (OTU): An external node representing a monophyletic group

 Tries to build a tree where the distances measured between leaves on the tree correspond to the actual distance between objects

 Tries to build a tree where the distances measured between leaves on the tree correspond to the actual distance between objects

	А	В	С	D
А	0			
В	5	0		
С	12	11	0	
D	12	11	2	0

 Tries to build a tree where the distances measured between leaves on the tree correspond to the actual distance between objects

- Tries to build a tree where the distances measured between leaves on the tree correspond to the actual distance between objects
- Easy to calculate when distance matrix is additive, but often is not.
- Need to use heuristics to pick best fitting tree because there are too many to try all.

Neighbour-joining

Maximum Likelihood

- Calculates the likelihood of trees based on substitution models and picks the model with the highest likelihood.
- Uses heuristics to search through the possible tree space.

Bayesian Trees

$$P(A|B) = rac{P(B|A) P(A)}{P(B)},$$

- Finds the tree with the highest posterior probability based on a model of evolution and prior probabilities.
- Can use MCMC to search the tree space.

Substitution models

- Many different models of varying complexity.
 - Equal or unequal mutation rates
 - Equal or unequal base frequencies
 - GC bias or not
- More parameters not always better, can overfit to your data, so you should use a program to pick the best model.

Substitution models

Hidden Changes

Seq1 A -> T -> C Seq2 A -> C

 Also helps control for saturation of mutations and hidden changes

Bootstrapping

- Repeat your analysis with a bootstrapped version of your dataset X1000 times.
 - Bootstrapping involves building a dataset of the same number of characters by sampling with replacement from your original dataset.
- The percent of bootstrap datasets that produce the same tree is your confidence value.

Gene trees

Marin et al., 2018

Gene tree assumptions

- Haplotypes are phased within diploid individuals
- No recombination within a gene
- No linkage between genes

Considerations for SNPs

- Generally you only keep variable sites, while many phylogenetic algorithms assume invariant sites are included.
- Need to use models that explicitly control for the ascertainment bias, or include invariant sites.

Allelic dropout

Allelic dropout

DaCosta & Sorenson 2016

Allelic dropout

- Overestimates genetic variation
- Causes drop out of high-frequency alleles.

Gautier et al. 2013

Ascertainment Bias

- Problem when using probe based SNP detection
- Biases SNP set to intermediate frequency alleles.

Gautier et al. 2013

Ways to use SNPs

- Concatenation
- SNAPP (+PoMo)
- Quartet methods

Ways to use SNPs

- Concatenation
- SNAPP (+PoMo)
- Quartet methods

Concatenation

a SNP data matrix

	locus1	locus2	locus3	locus4	locus5
species1_a	Α	Т	С	G	Α
species1_b	Α	Т	G	G	Α
species2_a	Т	Т	G	G	G
species2_b	Α	С	С	Т	G
species3	Α	С	С	Т	G

Concatenation

- Phylogeny estimated using other methods
- Problem: Ignores incomplete lineage sorting and assumes a single coalescent history.
- Problem: Overestimates support and can bias toward incorrect trees
- Solution: Include invariant sites from original alignments

Ways to use SNPs

- Concatenation
- SNAPP (+PoMo)
- Quartet methods

SNAPP (+PoMo)

a SNP data matrix

	locus1	locus2	locus3	locus4	locus5
species1_a	Α	Т	С	G	Α
species1_b	Α	Т	G	G	Α
species2_a	Т	Т	G	G	G
species2_b	Α	С	С	Т	G
species3	Α	С	С	Т	G

SNAPP (+PoMo)

- Uses allele frequencies to model demographic and phylogenetic history that matches data.
- Doesn't use gene trees, so its faster than gene tree methods.
- Also estimates divergence times and population sizes.

Ways to use SNPs

- Concatenation
- SNAPP (+PoMo)
- Quartet methods

Quartet methods

a SNP data matrix

	locus1	locus2	locus3	locus4	locus5
species1_a	Α	Т	С	G	Α
species1_b	Α	Т	G	G	Α
species2_a	Т	Т	G	G	G
species2_b	Α	С	С	Т	G
species3	Α	С	С	Т	G

Quartet methods

- Estimates quartet trees and then combines them into a larger species tree.
- Doesn't need gene trees

Reticulate networks

 Phylogenetic history is not always perfectly bifurcating. Gene flow can occur between species and different loci can have different phylogenetic histories.

Reticulate networks

Drift parameter

₩0.01